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ABSTRACT

One of the remaining puzzles in particle physics is the origin of electroweak

symmetry breaking. In the Standard Model (SM), a single doublet of complex scalar

fields is responsible for breaking the SU(2)L × U(1)Y gauge symmetry, thus giving

mass to the electroweak gauge bosons via the Higgs mechanism and to the fermions

via Yukawa couplings. The remnant of the process is a yet to be discovered scalar

particle, the Higgs boson (h). Current and future experiments at hadron colliders

hold great promise. The Fermilab Tevatron proton-antiproton (pp̄) collider, which

is currently running, has the potential to discover a light Higgs boson with mass

between 100 and 200 GeV. Starting in 2007, the CERN proton-proton (pp) Large

Hadron Collider (LHC) will be able to produce a Higgs boson over its full mass range

(up to 1 TeV) through multiple processes.

Of particular interest is the production of a Higgs boson in association with a pair

of heavy quarks, pp̄(pp) → QQ̄h, where Q can be either a top or a bottom quark.

Indeed, the production of a Higgs boson with a pair of top quarks provides a very

distinctive signal in hadronic collisions where background processes are formidable,

and it will be instrumental in the discovery of a Higgs boson below about 130 GeV

at the LHC. Also, since the Higgs boson is radiated from a top quark, this channel

provides a unique opportunity to directly measure the top quark Yukawa coupling.

On the other hand, the production of a Higgs boson with bottom quarks can be

strongly enhanced in models of new physics beyond the SM, e.g. supersymmetric

models. If this is the case, bb̄h production will play a crucial role at the Tevatron

where it could provide the first signal of new physics.
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Given the prominent role that Higgs production with heavy quarks can play at

hadron colliders, it becomes imperative to have precise theoretical predictions for

total and differential cross sections. Hadronic cross sections are mainly affected

by strong interaction effects which, at high energy, are described by perturbative

Quantum Chromodynamics (QCD). Lowest-order predictions in perturbative QCD

are often severely plagued by renormalization and factorization scale dependence.

Therefore, to obtain precise results, it becomes mandatory to calculate cross sections

beyond the LO. In this thesis, we report on the next-to-leading order (NLO) QCD

calculation for the total and differential cross sections of pp̄(pp) → QQ̄h. The

NLO cross sections exhibit drastically reduced dependence on renormalization and

factorization scales and, thus, lead to increased confidence in predictions based on

these results. In fact, the results presented in this thesis are currently being used in

experimental simulations at both the Tevatron and the LHC.

In the first part of this thesis, we outline and present detailed results for the

NLO QCD calculation of tt̄h production at both the Tevatron and the LHC. This

calculation involves several difficult issues due to the three massive particles in the

final state, a situation which is at the frontier of radiative correction calculations in

quantum field theory. For instance, the virtual one-loop corrections contain pentagon

Feynman diagrams with several massive internal and external particles that pose both

analytic and numerical challenges. Another difficulty arises in the calculation of the

real gluon emission contribution, where one must compute a four-body phase space

containing three massive particles. In this thesis, we will detail the novel techniques

we have developed to deal with these challenges.

In the second part of this thesis, we focus on the production of Higgs bosons

with bottom quarks. The calculation of pp̄(pp) → bb̄h at NLO in QCD involves

several subtle issues not encountered in the case of pp̄(pp) → tt̄h. Both from

an experimental and theoretical standpoint, it is important to distinguish between

inclusive and exclusive bb̄h production. In fact, the production of a Higgs boson

xiv



with a pair of b quarks can be detected via: (i) a fully exclusive measurement,

when both b jets are identified; (ii) a fully inclusive measurement, when no b jet

is identified; or (iii) a semi-inclusive measurement, when at least one of the two b

jets is identified. Theoretically, different calculational approaches may be adopted

when a final state b quark is treated either exclusively or inclusively. In this thesis,

we present results for both exclusive and inclusive production of Higgs bosons with

bottom quarks, and we devote particular care to clarifying some outstanding issues

concerning the inclusive production modes. Indeed, when a final state b quark is

not identified, the corresponding integration over its phase space gives rise to large

collinear logarithms originating from the region of low transverse momentum. These

collinear logarithms appear at every order in the strong coupling αs and, hence,

could hinder the convergence of the perturbative expansion. Currently, there are

two approaches to the calculation of inclusive Higgs production with bottom quarks:

one can (i) calculate the partonic processes gg, qq̄ → bb̄h at fixed order in αs with

no special treatment of the collinear logarithms (the so-called Four Flavor Number

Scheme) or (ii) introduce a bottom quark Parton Distribution Function, in which

case the semi-inclusive process becomes gb → bh and the inclusive one bb̄ → h,

and resum leading and sub-leading logarithms through the Altarelli-Parisi equation

(the so-called Five Flavor Number Scheme). Here, we compare these two seemingly

different schemes and show that they produce compatible results for the total and

differential cross sections in the cases of Higgs production with zero tagged b jets and

one tagged b jet. This comparison is made possible by having computed the NLO

QCD cross section for bb̄h production.
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CHAPTER 1

BREAKING THE ELECTROWEAK

SYMMETRY

1.1 The Standard Model

The Standard Model (SM) of particle physics is the theoretical framework which

best describes all of the experimentally observed properties of elementary particles

and their interactions [2, 3, 4]. It is a quantum field theory based on the (local) gauge

symmetry SU(2)L×U(1)Y for the electroweak interactions and SU(3)C for the strong

interactions. The matter sector of the SM consists of fermionic fields called quarks and

leptons, which are organized into three families or generations. Each generation has

identical properties except for mass. The fermions all carry a hypercharge quantum

number (Y of U(1)Y ) and transform either as left-handed doublets or right-handed

singlets under the weak isospin gauge group, SU(2)L. Quarks also carry a color

quantum number and transform as triplets of SU(3)C . The gauge vector boson

sector of the SM is composed of the massive weak interaction bosons, W ± and Z0,

the massless electromagnetic photon, and eight massless, colored gluons. Since the

W± and Z0 are known to be massive, the SU(2)L × U(1)Y gauge symmetry of the

electroweak interaction must be broken. In fact, the SM Lagrangian which describes

the theory cannot contain explicit mass terms for either the gauge fields or the

fermion fields, since such terms would destroy gauge invariance. Therefore, there

are two distinct problems concerning mass: (i) explaining the masses of the gauge

bosons, which requires an understanding of electroweak symmetry breaking (EWSB)
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and (ii) accounting for the masses of the fermion fields, which requires not only an

understanding of EWSB but also explaining how the breaking of gauge symmetry is

communicated to the fermionic sector.

1.1.1 The Higgs mechanism

First of all, to give the W± and Z0 bosons mass, while leaving the photon massless,

the SU(2)L × U(1)Y gauge symmetry of the SM is assumed to be spontaneously

broken, i.e. the Lagrangian is symmetric under gauge transformations (or gauge

invariant), but the vacuum state and spectrum of particles are not. The simplest way

to induce spontaneous symmetry breaking (SSB) is the Higgs mechanism [5, 6, 7, 8].

In the SM, this is achieved by introducing an SU(2) doublet of complex scalar fields:

Φ =

(

φ+

φ0

)

, (1.1)

with the Lagrangian:

L = (DµΦ)†(DµΦ) − [µ2Φ†Φ + λ(Φ†Φ)2] ≡ (DµΦ)†(DµΦ) − V (Φ) , (1.2)

where Dµ = (∂µ − igAa
µτ

a − ig′YφBµ) is the covariant derivative associated with the

SU(2)L × U(1)Y gauge symmetry. Aa
µ is the gauge field of the SU(2)L gauge group,

Bµ is the gauge field of the U(1)Y , while g and g′ are the couplings of the SU(2)L

and U(1)Y gauge groups respectively. The matrices τ a =σa/2 (for a=1, 2, 3) are the

SU(2) Lie algebra generators, proportional to the Pauli matrices σa, and Yφ is the

generator of the U(1)Y group.

In the scalar potential V (Φ), λ and µ2 are arbitrary parameters, with λ > 0

in order for V (Φ) to be bounded from below. To achieve spontaneous symmetry

breaking, one chooses µ2 < 0, in which case V (Φ) is minimized by field configurations

that satisfy the condition:

Φ†Φ =
−µ2

λ
≡ v2 , (1.3)
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instead of Φ†Φ = 0 as is the case when µ2 > 0. Equivalently, we can say that the

Higgs potential V (Φ) is minimized for a non-zero vacuum expectation value (vev).

In particular, to be identified with the electromagnetic U(1)em, the SU(2)L × U(1)Y

gauge symmetry of the Lagrangian is broken when the vev 〈Φ〉 is chosen to be:

〈Φ〉 = Φ0 =
1√
2

(

0

v

)

. (1.4)

When expanded about the chosen minimum of V (Φ), parameterizing the fields in

terms of the shifted field Φ′ (Φ → Φ0 + Φ′), the kinetic term of the Lagrangian

(Eq. (1.2)) becomes:

(Dµφ)†Dµφ −→ · · · + 1

8
(0 v)

(

gAa
µσ

a + g′Bµ

) (

gAbµσb + g′Bµ
)

(

0
v

)

+ · · ·

−→ · · · + 1

2

v2

4

[

g2(A1
µ)2 + g2(A2

µ)2 + (−gA3
µ + g′Bµ)2

]

+ · · ·

(1.5)

In Eq. (1.5), one can then recognize the mass terms for the W±
µ :

W±
µ =

1√
2
(A1

µ ± A2
µ) −→ MW = g

v

2
, (1.6)

and for the neutral Z0
µ gauge boson:

Z0
µ =

1
√

g2 + g′2
(gA3

µ − g′Bµ) −→ MZ =
√

g2 + g′2v

2
, (1.7)

while the orthogonal linear combination of A3
µ and Bµ remains massless and corre-

sponds to the photon (Aµ):

Aµ =
1

√

g2 + g′2
(g′A3

µ + gBµ) −→ MA = 0 , (1.8)

the gauge boson of the residual U(1)em gauge symmetry.

The content of the scalar sector of the theory becomes more transparent if one

works in the unitary gauge and uses gauge invariance to eliminate any unphysical
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degrees of freedom. This amounts to parameterizing and rotating the Φ(x) complex

scalar field as follows:

φ(x) =
e

i
v

~χ(x)·~τ
√

2

(

0
v + h(x)

)

SU(2)−→ φ(x) =
1√
2

(

0
v + h(x)

)

, (1.9)

where the χ degrees of freedom have been rotated away, as indicated in Eq. (1.9), by

enforcing the SU(2) gauge invariance of the original Lagrangian. With this gauge

choice (or the so-called unitary gauge), the scalar Lagrangian becomes:

Lφ = µ2h2 − λvh3 − 1

4
h4 = −1

2
M2

hh2 −
√

λ

2
Mhh

3 − 1

4
λh4 . (1.10)

Three degrees of freedom (χa(x)) have been reabsorbed into the longitudinal compo-

nents of the W±
µ and Z0

µ weak gauge bosons making them massive. One real scalar

field remains, the Higgs boson h, with mass M 2
h = −2µ2 = 2λv2 and self-couplings

which are given by:

ghhh = −3i
M2

h

v
and ghhhh = −3i

M2
h

v2
. (1.11)

Furthermore, some of the terms omitted in Eq. (1.5), the terms linear in the gauge

bosons W±
µ and Z0

µ, give rise to couplings between the massive vector gauge bosons,

V (V = W± or Z0), and the Higgs boson of the form:

gV V h = 2i
M2

V

v
gµν . (1.12)

1.1.2 Yukawa interactions and fermion masses

Let us now turn to the problem of fermion masses. The only possibility of giving

mass to the quarks and leptons, while respecting the SU(2)L × U(1)Y symmetry

of the theory, is by adding to the SM Lagrangian a gauge-invariant, renormalizable

Yukawa interaction of the form:

LYukawa = −Γij
u Q̄i

LΦcuj
R − Γij

d Q̄i
LΦdj

R − Γij
e L̄i

LΦljR + h.c. (1.13)

where Φc = −iσ2Φ†, and Γf (f = u, d, l) are matrices of couplings arbitrarily

introduced to realize the Yukawa coupling between the field Φ and the fermionic
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fields of the SM. Qi
L and Li

L (where i = 1, 2, 3 is a generation index) represent

quark and lepton left handed doublets of SU(2)L, while ui
R, di

R and liR are the

corresponding right handed singlets. Once the Higgs mechanism is invoked to give

the weak gauge bosons mass, these Yukawa terms in the Lagrangian communicate

SSB to the fermionic sector. Actually, when the Higgs doublet is expanded about its

vev, the Yukawa Lagrangian gives rise to fermion mass terms:

mf = Γf
v√
2

, (1.14)

where the process of diagonalization from the current eigenstates in Eq. (1.13) to

the mass fermionic eigenstates is understood and Γf are therefore the elements of

the diagonalized Yukawa matrices corresponding to a given fermion f . The Yukawa

couplings of the f fermion to the Higgs boson (gff̄h) is proportional to Γf :

gff̄h =
Γf√

2
=

mf

v
. (1.15)

Hence, given Eqs. (1.12) and (1.15), we expect that the dominant production and

decay modes of the SM Higgs boson are those in which the Higgs boson couples

directly or indirectly to heavy particles, i.e. the weak bosons W± and Z0 , the top

quark and, to a lesser extent, the bottom quark.

1.1.3 Theoretical constraints on the SM Higgs boson mass

Despite the success of the SM in describing physics at energy scales of O(100 GeV)

and below, it is generally believed that the SM is an effective theory which breaks

down at some large scale Λ. That is, the SM ceases to be adequate to describe physics

above Λ, and effects associated with new physics become relevant. In particular, we

know that Λ must be less than the Planck scale (MPL ' 1019 GeV), since above MPL

quantum gravitational effects become significant and the SM must be replaced by a

more fundamental theory which incorporates gravity. In this context, the scale of

new physics Λ can be related through several theoretical arguments to the SM Higgs
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Figure 1.1. The upper [11] and lower [12] Higgs mass bounds as a function of the
energy scale Λ at which the SM breaks down. See Ref. [9] and references within.

boson mass, Mh, and a lower and upper bound on Mh can be derived as a function

of Λ. Several discussions can be found in the literature and we refer the reader in

particular to Refs. [9] and [10]. For the purpose of this thesis, we can explain Fig. 1.1.

First, if Mh is too small, the Higgs potential develops a second minimum at a large

value of the scalar field of order Λ [12]. Thus, new physics must enter at some scale

less than Λ in order to ensure that the global minimum of the theory correspond to

the observed SU(2)L × U(1)Y broken vacuum with v = 246 GeV. Second, if Mh is

too large, then the Higgs self-coupling λ blows up at some scale below the Planck

scale [11]. Thus, given a scale Λ, one can compute the minimum and maximum Higgs

masses allowed. In Fig. 1.1, we see that a Higgs mass in the range 130 GeV ≤ Mh ≤
180 GeV is consistent with an effective SM that survives all the way to the Planck

scale [9].
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Figure 1.2. SM Higgs decay branching ratios as a function of Mh. The blue
curves represent tree-level decays into electroweak gauge bosons, while the red curves
represent tree-level decays into quarks and leptons. The green curves represent the
one-loop induced decays. From Ref. [10].

1.1.4 SM Higgs boson decays

The preference of the SM Higgs boson to couple to heavy particles also plays a

role in its decay pattern. As can be seen in Fig. 1.2 [10], a light SM Higgs boson

(Mh ≤ 130−140 GeV) mainly decays into a pair of bottom quarks, bb̄, while a heavier

SM Higgs boson mainly decays into W +W−, Z0Z0 and tt̄ pairs. Actually, the overall

behavior of a light SM Higgs boson differs substantially from a heavier one. In this

mass range, loop-induced decays also play a role. h → gg, which proceeds through a

loop of top quarks, is the the most dominant among these. Unfortunately, at hadron

colliders, this decay channel is buried by hadronic background processes. Between

the rare decays h → γγ and h → γZ0 decays, h → γγ which proceeds through loops

of W±’s and top quarks, has the larger branching ratio and provides the cleaner

signal, because of the very neat two photon signal.
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On the other hand, for larger Higgs masses, it becomes kinematically favorable

for the SM Higgs boson to decay into weak gauge bosons (W +W− and Z0Z0). In

this region, all decays into fermions or loop-induced decays vanish, except for h → tt̄

for Higgs masses above the tt̄ production threshold. In the intermediate Higgs mass

range (around Mh ≈ 160 GeV), i.e. below the W +W− and Z0Z0 mass thresholds,

the Higgs boson can still decay into a pair of heavy gauge bosons, although one of

the gauge bosons is now off-shell, h → WW ∗, ZZ∗. These three-body decays (since

the off-shell gauge boson quickly decays) start to dominate over the bb̄ decay channel

because the largeness of the gauge boson couplings to the Higgs boson compensates

for their phase space suppression. As we will see in the next chapter, the different

decay patterns for light and heavy Higgs bosons will influence the role played, in

each mass region, by different Higgs production processes at hadron colliders.

1.2 The Minimal Supersymmetric Standard Model

The way in which EWSB is realized through the SM Higgs mechanism is, however,

not entirely satisfactory and the Higgs mechanism itself is rather ad hoc. Both the

Higgs boson mass and the Yukawa couplings remain arbitrary. In addition, the

renormalized Higgs boson mass depends quadratically on the scale at which the SM

ceases to be the effective theory of Nature and a satisfactory value of Mh at the

EW scale can be obtained only at the price of extreme fine tuning of parameters.

The quadratic growth in the Higgs boson mass beyond lowest order in perturbation

theory is one of the driving motivations for alternatives (or extensions) to the SM.

Among the most interesting and successful attempts at going beyond the SM

is supersymmetry (SUSY), in particular, the Minimal Supersymmetric Standard

Model (MSSM). In any supersymmetric theory, EWSB is still realized via the Higgs

mechanism, but, in order to give masses to both up- and down-type fermions, two

Higgs doublets must be introduced. The quadratic divergences encountered in the
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perturbative calculation of the Higgs boson mass vanish in the SUSY limit (i.e. where

SUSY is an unbroken symmetry) due to the existence of equal numbers of bosons

and fermions which contribute with opposite signs to loop corrections. Therefore,

no extreme fine-tuning seems to be required to ensure that Mh stays around the

electroweak scale. Moreover, SUSY theories contain a dynamic mechanism which

drives EWSB, known as radiative electroweak symmetry breaking (REWSB) [13, 14,

15, 16]. In this mechanism, renormalization effects drive the Higgs boson squared

mass parameters to negative values, resulting in the observed EWSB pattern.

Before discussing the Higgs sector of the MSSM, let us first explain how the

MSSM is constructed. The MSSM is built upon four basic assumptions:

Minimal gauge group: the MSSM is assumed to possess the same gauge group

as the SM, i.e. SU(3)C × SU(2)L × U(1)Y .

Minimal particle content: in the MSSM, the particle content is that of the

SM plus a new fermion (boson) partner field for each boson (fermion) field of the

SM. However, to avoid reintroducing gauge anomalies (which cancel in the SM) and

to give masses to both up- and down-type fermions, two Higgs doublets must be

introduced along with their fermion superpartners.

Conservation of R parity: in order to avoid baryon and lepton number

violation, a discrete symmetry called R parity is introduced. The conservation

of R parity results in consequences which are important for searches at collider

experiments, mainly that: SUSY particles are always produced in pairs, their decay

products always contain an odd number of SUSY particles and the lightest SUSY

particle (LSP) is absolutely stable.

Minimal set of soft SUSY-breaking terms: we know that supersymmetry

is a broken symmetry since, for example, no bosonic particle has been observed

with mass equal to that of the electron. Unfortunately, the mechanism behind this

breaking is yet unknown. Therefore, to break supersymmetry in the MSSM, one

must add to the Lagrangian a (minimal) set of terms to break it explicitly. As a
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consequence, the MSSM contains a large number (105) of new parameters in addition

to the 19 from the SM. However, most of these parameters have no impact on Higgs

boson phenomenology and we will not concern ourselves with them here. Below, we

identify and discuss the parameters that govern the main properties of the MSSM

Higgs bosons.

1.2.1 Higgs sector of the MSSM

Due to restrictions on the form of the superpotential in any SUSY theory, the Higgs

sector of the MSSM must contain two Higgs doublets in order to give masses to both

up- and down-type fermions: one complex Y = -1 doublet, Φd = (Φ0
d,Φ

−
d ), and one

complex Y = +1 doublet, Φu = (Φ+
u ,Φ0

u). Where, Φd (Φu) couples exclusively (at

tree level) to up- (down-)type fermions. Similar to the SM, when the Higgs potential

is minimized, the neutral components of the Higgs fields develop vevs, thus breaking

the electroweak symmetry. The minima of the scalar potential are usually chosen to

be:

〈Φd〉 =
1√
2

(

vd

0

)

, 〈Φu〉 =
1√
2

(

0
vu

)

, (1.16)

where vu and vd satisfy the normalization condition: v2 ≡ v2
d+v2

u = (246 GeV)2. As in

the SM, three of the original degrees of freedom become the longitudinal components

of the W± and Z0 gauge bosons, thus giving them mass. This results in five left-over

scalar degrees of freedom which are identified with the five physical Higgs bosons of

the MSSM. They consist of two CP-even scalars:

h0 = −(
√

2Re Φ0
d − vd) sinα + (

√
2 ReΦ0

u − vu) cos α ,

H0 = (
√

2Re Φ0
d − vd) cos α + (

√
2Re Φ0

u − vu) sin α , (1.17)

one CP-odd scalar (or pseudoscalar)

A0 =
√

2
(

Im Φ0
d sin β + Im Φ0

u cos β
)

, (1.18)
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and a pair of charged Higgs bosons

H± = Φ±
d sin β + Φ±

u cos β , (1.19)

where α is the angle that diagonalizes the CP-even Higgs mass matrix to obtain the

physical Higgs bosons h0 and H0, while the angle β serves to parameterize the ratio

of the two Higgs vevs as:

tanβ ≡ vu

vd

. (1.20)

The Higgs sector of the MSSM is fully described in terms of six parameters:

the four Higgs masses (Mh0 , MH0 , MA0 and MH±) and the two angles (α and β).

However, in contrast to the Higgs sector of the SM, the SUSY structure of the

MSSM imposes very strong constraints on the properties of the Higgs bosons.

Consequently, the tree-level Higgs sector of the MSSM can be fully described by

only two free parameters, which are conveniently chosen to be tan β and the mass

of the pseudoscalar (MA0). The masses of the four remaining Higgs bosons can be

written in terms of these two parameters as:

M2
H± = M2

A0 + M2
W , (1.21)

and

M2
H0,h0 =

1

2

(

M2
A0 + M2

Z ±
√

(M2
A0 + M2

Z)2 − 4M2
ZM2

A0 cos2 2β

)

. (1.22)

By definition, h0 is chosen to be the lighter of the two CP-even scalars. In addition,

one can obtain a condition to determine the angle α, namely:

cos2(β − α) =
M2

h0(M2
Z − M2

h0)

M2
A0(M2

H0 − M2
h0)

. (1.23)

An important consequence of Eq. (1.22) is that the MSSM provides an upper bound

to the mass of the light CP-even Higgs boson, h0, given by:

Mh0 ≤ MZ | cos 2β| ≤ MZ . (1.24)

This (tree-level) condition implies that h0 should be lighter than the Z0 boson and,

thus, should have been detected at past experiments. However, it turns out that
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SUSY radiative corrections to Mh0 are large and, in fact, significantly shift the upper

limit to the range Mmax
h0 ' 130 GeV (depending on the value of tanβ and on the

amount of mixing between the superpartners of the top quark). The fact that the

MSSM predicts an upper limit is in sharp contrast to the SM, where the mass of the

Higgs is only mildly constrained as seen in Sec. 1.1.3. However, it is interesting to

note that the MSSM prediction Mmax
h0 ' 130 GeV is consistent with the predictions

shown in Fig. 1.1 at Λ ' 1 TeV, where SUSY effects are predicted to appear. Finally,

both the Tevatron and the LHC will be able to test this important prediction of the

MSSM.

1.2.2 Higgs-fermion interactions in the MSSM

The other aspect of the MSSM Higgs sector that is of importance to the work

done for this thesis concerns the interactions between the neutral Higgs bosons and

the fermions. In the MSSM, the tree-level Higgs couplings to the fermions are given

by the Lagrangian (using third generation notation):

−LYukawa = ht

[

t̄PLtΦ0
u − t̄PLbΦ+

u

]

+ hb

[

b̄PLbΦ0
d − b̄PLtΦ−

d

]

+ h.c. , (1.25)

where PL ≡ 1
2
(1−γ5) is the left-handed projection operator. Using Eqs. (1.17)-(1.19)

along with Eq. (1.25), one can extract the couplings of the neutral Higgs bosons to

f f̄ pairs relative to the SM values:

h0bb̄ (or h0τ+τ−) : − sin α

cos β
gbb̄h = [sin(β − α) − tanβ cos(β − α)] gbb̄h , (1.26)

h0tt̄ :
cos α

sin β
gtt̄h = [sin(β − α) + cot β cos(β − α)] gtt̄h , (1.27)

H0bb̄ (or H0τ+τ−) :
cos α

cos β
gbb̄h = [cos(β − α) + tanβ sin(β − α)] gbb̄h , (1.28)

H0tt̄ :
sin α

sin β
gtt̄h = [cos(β − α) − cot β sin(β − α)] gtt̄h , (1.29)
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A0bb̄ (or A0τ+τ−) : γ5 tanβ gbb̄h , (1.30)

A0tt̄ : γ5 cot β gtt̄h , (1.31)

where gbb̄h and gtt̄h are the SM Yukawa couplings of the bottom and top quarks

respectively (see Section 1.1.2). In particular, we see that for large tan β (sin β → 1

and cos β → 0), the neutral Higgs bosons couplings to down-type quarks become

strongly enhanced, while the couplings to up-type quarks are suppressed.

Recently, it has been shown that, for large tanβ, the SUSY radiative corrections

to the MSSM Yukawa couplings can also be quite significant [17]. As an example,

consider the situation for the bottom quark in the MSSM. At tree level and in

the supersymmetric limit, the bottom quark only couples to the down-type Higgs

doublet (Φd). However, SUSY is broken and the bottom quark develops a small

(loop-induced) coupling to the up-type Higgs doublet (Φu), such that the effective

Lagrangian for the bottom Yukawa couplings becomes:

L = hbΦdbb̄ + ∆hbΦubb̄ . (1.32)

The second term is loop-suppressed compared to the first, but when the Higgs dou-

blets acquire vacuum expectation values, the bottom quark mass receives corrections

proportional to ∆hbvu. In the limit of large tan β (vu � vd), the two terms in

Eq. (1.32) become comparable in size and, thus, the bottom quark mass can be

significantly modified from the (SUSY) tree-level value, namely

mb = hbvd(1 + ∆(mb)) , (1.33)

where ∆(mb) = ∆hb tanβ/hb. Using Eq. (1.33), one can extract the corrections to

the bottom quark Yukawa coupling of the physical Higgs bosons. For the neutral

Higgs, we have:

gbb̄h0 = −mb

v

sin α

cos β

[

1 − ∆(mb)

1 + ∆(mb)

(

1 +
1

tanα tan β

)]

gbb̄h , (1.34)
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gbb̄H0 =
mb

v

cos α

cos β

[

1 − ∆(mb)

1 + ∆(mb)

(

1 − tanα

tanβ

)]

gbb̄h , (1.35)

gbb̄A0 =
mb

v
tanβ

[

1 − ∆(mb)

(1 + ∆(mb)) sin2 β

]

gbb̄h . (1.36)

1.2.3 Regimes of the MSSM Higgs sector

Although fully determined by only two free parameters, the phenomenology of the

MSSM Higgs sector can be quite diverse, depending on the values of MA0 and tanβ.

For simplicity and since it is important to the study performed here, i.e. Higgs boson

production with bottom quarks, we focus on the large tan β (
>∼ 10) region where the

Yukawa couplings to down-type fermions can become enhanced for the neutral Higgs

bosons. In this region, the MA0 − tanβ plane divides into three distinct regimes

which we briefly describe below.

Decoupling regime: in the case where MA0 is large compared to the maximal

mass of h0, MA0 � Mmax
h0 , we immediately see from Eq. (1.22) that the H0 becomes

degenerate in mass with the pseudoscalar, MH0 ≈ MA0 . Additionally, the inequality

in Eq. (1.24) saturates and the light CP-even Higgs boson reaches its maximal mass,

Mh0 ≈ Mmax
h0 . Using Eqs. (1.23) and (1.26)-(1.31), we also see that the Yukawa

couplings to down-type fermions of the heavy CP-even Higgs and the pseudoscalar

Higgs become nearly equal in strength and, thus, highly enhanced for large tanβ.

However, the couplings of the light CP-even Higgs bosons become equal to those

corresponding to the SM Higgs boson, i.e. h0 becomes SM-like.

Anti-decoupling regime: when MA0 is small, i.e. MA0 � Mmax
h0 , the situation is

exactly the opposite of that in the decoupling regime. Namely, the h0 and A0 become

nearly degenerate in mass, while the mass of the heavy CP-even Higgs approaches

Mmax
h0 . Thus, in this regime, all three scalar Higgs bosons are light. Additionally, the

Yukawa couplings to down-type fermions of the h0 become nearly equal in strength

14



to that of the pseudoscalar and are greatly enhanced for large tanβ. In contrast, the

couplings of the heavy CP-even Higgs boson become SM-like.

Intense-coupling regime: finally, when MA0 ≈ Mmax
h0 , all three neutral Higgs

bosons become nearly degenerate in mass, MA0 ≈ Mh0 ≈ MH0 ≈ Mmax
h0 . In this

regime, which serves as a transition between the decoupling and anti-decoupling

regimes, both h0 and H0 have enhanced couplings to down-type fermions. However,

given the mass degeneracy in this region, distinguishing the three different scalar

Higgs bosons will be extremely difficult.

1.2.4 MSSM Higgs boson decays

As can be expected from the above discussion, the decay patterns of the MSSM

Higgs bosons can be quite different from those of the SM Higgs boson. In particular,

the hierarchy of decay modes strongly depends on the values of MA0 and tanβ and

is clearly sensitive to the choice of the SUSY masses since these determine the

possibility for the MSSM Higgs bosons to decay into pairs of SUSY particles and

for the loop-induced decay channels (h0, H0 → gg, γγ, etc.) to receive SUSY loop

contributions.

To simplify matters, we will assume that all SUSY masses (excluding the Higgs

bosons) are all large enough to prevent the decay of the MSSM Higgs bosons into

pairs of SUSY particles. In this scenario, we only need to examine decays into

SM particles and compare with the decay patterns of a SM Higgs boson to identify

interesting differences (see Figs. 1.3 and 1.4).

From the discussion in Section 1.2.3, we can make several general statements

about the decay patters of the MSSM Higgs bosons. First, in the decoupling regime,

where MA0 � MZ , the properties of the h0 are almost identical to that of the

SM Higgs boson and the decay patterns discussed in Section 1.1.4 apply. On the

other hand, in this regime, the H0 is very heavy (MH0 ' MA0) and its couplings

to down-type fermions (electroweak gauge bosons) become extremely enhanced
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Figure 1.3. Branching ratios for the h0 and H0 MSSM Higgs bosons, for
tan β =3, 30. The range of MH corresponds to MA =90 GeV − 1 TeV, in the MSSM
scenario discussed in the text, with maximal top-squark mixing. The vertical line
indicates the upper bound on Mh0, which, for the given scenario is mmax

h0 =115 GeV
(tanβ = 3) or mmax

h0 =125.9 GeV (tanβ = 30). From Ref. [9].

(suppressed) such that it decays predominantly into bb̄, τ+τ− over the full mass range.

Away from the decoupling regime, we can expect that the decay rates of the h0 and

H0 to the electroweak gauge bosons are suppressed in comparison to the SM case.

Also, the decays of the pseudoscalar A0 into vector gauge bosons are absent due to

CP-invariance. Finally, in the anti-decoupling and the intense-coupling regimes, the

couplings of all neutral MSSM Higgs bosons to bb̄, τ+τ− pairs are enhanced for large

values of tanβ, thus making these the dominant decay modes.
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Figure 1.4. Branching ratios for the A0 MSSM Higgs boson, for tan β =3, 30. From
Ref. [9].

1.3 Summary

The Higgs sector of the SM remains the least tested piece of this otherwise

extremely successful theory. In particular, discovering the mechanism behind EWSB

and the origin of the quark and lepton masses are two of the main challenges facing

particle physics and both of these problems are the main goals of present and future

colliders. One thing is for sure, both the SM and models of new physics, in particular

the MSSM, seem to indicate that the mechanism behind EWSB should rear its head

around or below the TeV scale. Considering the center of mass energies of present

and future colliders (1.96 - 14 TeV), this is a very interesting time for particle physics

and, in particular, Higgs physics. A more detailed description of the past, present,

and future effort in the search for a Higgs boson is given in the next chapter.
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CHAPTER 2

IN SEARCH OF A HIGGS BOSON

Even though the SM has been probed to extreme accuracy, the final piece of the

puzzle, the Higgs boson, has yet to be discovered. Moreover, had supersymmetry

to be realized in Nature, there will be a spectrum of Higgs bosons, one of which at

least should be light. Once a Higgs boson is discovered, the next task will be to

measure its properties, in particular its couplings to SM particles. In this chapter,

we review the current bounds on the mass of the SM and MSSM Higgs bosons from

both indirect and direct searches. We also summarize the search strategies for SM

and MSSM Higgs bosons at hadron colliders.

2.1 Limits on the Higgs mass from precision electroweak
data

Over the past few decades, the SM has been tested to extremely high precision.

At present, all measurements performed on observables of the electroweak sector

(e.g. MW , MZ , etc.) seem to agree with the predictions of the SM. The theoretical

calculations of these observables contain all known orders of radiative corrections, to

which the Higgs boson also contributes. The electroweak precision measurements are,

in fact, sensitive to these radiative corrections and, therefore, can be used to place

indirect constraints on the properties of the Higgs boson, in particular its mass.

With this respect, Fig. 2.1 shows the ∆χ2 (≡ χ2 − χ2
min) of the fit to all

measurements of the electroweak sector as a function of Mh [18]. Apparently, the

data seems to favor a light Higgs boson with a (best fit) mass
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Figure 2.1. The ∆χ2 of the fit to electroweak data as a function of Mh (using mt =
178 GeV). The solid line results when all data are included, while the shaded band
is the estimated theoretical error from unknown higher-order corrections [18].

Mh = 129+74
−49 GeV , (2.1)

with a 95% Confidence Level (C.L.) upper limit of

Mh < 285 GeV. (2.2)

To conclude, it should be noted that the precise agreement between the elec-

troweak precision data and the SM is not unique. In fact, any extension of the SM

which contains an elementary, weakly-coupled Higgs particle generates only small

corrections to the electroweak observables, even if these models contain a large

number of new particles (e.g. supersymmetric theories).
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Figure 2.2. Feynman diagram for e+e− → Z0h.

2.2 Direct searches

The most recent direct search for Higgs bosons was performed at the LEP2

(CERN) e+e− collider which reached a maximum center-of-mass (CM) energy of
√

s = 209 GeV. At this energy, the dominant production mode is e+e− → Z0h,

where the Higgs boson is radiated from an off-shell Z0 boson (see Fig. 2.2). The

search was performed using two different Higgs decay modes, h → bb̄ and h → τ+τ−,

and several decay modes for the Z0. At present, combining the results for the four

LEP collaborations, no significant excess above the SM background has been observed

up to an exclusion limit of [19]:

Mh > 114.4 GeV (2.3)

at the 95% C.L. In addition to this limit, the collaborations report a 1.7σ excess of

events for a Higgs boson mass of Mh = 116 GeV [19].

The non-observation of a Higgs boson signal at LEP can also be used to

place limits on the masses of the MSSM Higgs bosons using the search channels

e+e− → Z0h0(A0) and e+e− → h0A0. Given the complexity of the MSSM parameter

space, though, it is difficult to state general exclusion limits on the Higgs boson

masses. However, for representative scans of the MSSM parameters, the LEP Higgs

Working Group finds that the masses of the lightest scalar and the pseudoscalar

MSSM Higgs bosons are excluded below 91.0 GeV and 91.9 GeV, respectively, at the

95% C.L. [20].
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2.3 Higgs boson production at hadron colliders

The next experiments designed to search for Higgs bosons are at hadron colliders.

The Tevatron proton-antiproton (pp̄) collider is currently running with a center-of-

mass (CM) energy of
√

sH = 1.96 TeV and should be able to provide evidence for a

low mass Higgs boson in the range Mh = 100 − 200 GeV. The LHC proton-proton

(pp) collider is set to turn on in 2007 with a a CM energy of
√

sH = 14 TeV and will

be able to discover a Higgs boson with mass up to ∼ 1 TeV. Therefore, regardless of

the true structure of the Higgs sector, if it exists, a Higgs boson will be discovered in

the near future. In the following, after a brief introduction to the general structure

of the theoretical calculation for Higgs production at hadron colliders, we outline

the search strategies for SM and MSSM Higgs bosons at both the Tevatron and the

LHC.

2.3.1 Theoretical calculations for Higgs production in hadronic collisions

The cross section for pp and pp̄ collisions to produce a final state including a

Higgs boson can be schematically written as:

σ(pp, pp̄ → H + X) =
∑

ij

∫

dx1dx2Fp
i (x1)Fp,p̄

j (x2)σ̂(ij → h + X) , (2.4)

where i and j run over the elementary constituents of a proton (antiproton), quarks

and gluons, collectively denoted as partons. Eq. (2.4) expresses the fact that the

hadronic cross section is calculated as the convolution of a partonic cross section,

σ̂(ij → h + X), with Parton Distribution Functions (PDFs), F p,p̄
i,j (x), which can be

interpreted as the probability of finding parton i, j in a proton (or antiproton) with

a fraction x of the (anti)proton’s longitudinal momentum.

In hadronic collisions, the most important effects arise from the strong inter-

actions. Therefore, it is mandatory to have under control the QCD perturbative

expansion of the hadronic cross section σ(pp, pp̄ → h + X). To accomplish this, the
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Figure 2.3. Leading Higgs production processes at hadron colliders: gg → h,
qq̄ → Wh, Zh and qq → qqh.

partonic cross section and the evolution of the PDFs are calculated perturbatively.

At each order in the perturbative expansion, the calculation of σ̂(ij → h + X)

and Fp,p̄
i,j contains ultraviolet divergences that are subtracted through a standard

renormalization procedure. This, at each finite order, leaves a dependence on the

renormalization scale, µR, which reflects the fact that the calculation is based on

a truncated series. In the same way, when the PDFs are defined in terms of

their (experimentally-measured) non-perturbative cores, a factorization scale, µF ,

is introduced in the calculation of F p,p̄
i,j and σ̂(ij → h + X). In both cases, the

dependence on these scales is indicative of the residual theoretical uncertainty present

at a given perturbative order. Typically, lowest or leading order (LO) predictions for

hadronic cross sections are plagued by very large renormalization/factorization scale

dependence. Thus, one is forced to calculate at least next-to-leading order (NLO)

QCD corrections to stabilize the theoretical prediction. In fact, for some cases of

Higgs production in hadronic collisions, next-to-NLO (NNLO) QCD corrections are

required to obtain reliable results.

2.3.2 Higgs bosons at hadron colliders: generalities

The most important partonic processes for Higgs boson production in hadronic

collisions are shown in Figs. 2.3 and 2.4. All of these processes have been calculated

at NLO in QCD [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], while NNLO corrections

have recently been obtained for gg → h [32] and qq̄ → HV (where V = W±, Z0) [33].
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Figure 2.4. Sample Feynman diagrams depicting Higgs production with heavy
quarks: qq̄, gg → tt̄h, bb̄h.

Figs. 2.5 and 2.6 summarize the production cross sections for these processes at both

the Tevatron and the LHC as a function of the Higgs mass [10].

Due to the large luminosity of gluons at the Tevatron and the LHC, the dominant

production mode at both machines is that of gluon fusion, gg → h. Although this

process is loop-induced, it is greatly enhanced by color structure and the top quark

Yukawa coupling, which is of O(1). However, for light and intermediate Higgs bosons

(i.e. below the h → WW threshold), the Higgs boson decays predominantly to bb̄

pairs and the gluon fusion mode must compete with the background process gg → bb̄,

which boasts a huge cross section. Thus, extracting a signal from the gg → h → bb̄

channel is extremely difficult and one must rely on sub-leading decays such as h → γγ.

On the other hand, for larger Higgs masses (i.e. above the h → ZZ threshold), gluon

fusion together with h → ZZ produces a very distinctive signal, and makes this a

gold-plated mode for discovery. For this reason, gg → h will play a fundamental role

at the LHC over the entire Higgs mass range (especially for heavy Higgs bosons), but

it is of very limited use at the Tevatron where it can only be considered for Higgs

masses close to the upper reach of the machine (Mh ' 200 GeV).

The most promising detection mode at the Tevatron is the associated production

of a Higgs boson with a weak gauge boson, qq̄ → hW, hZ (second diagram in Fig. 2.3).

Although this channel plays a smaller role at the LHC, it is extremely important at
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the Tevatron where only a light Higgs boson can be discovered. In this range, the

Higgs will decay mostly into bb̄, but one can use the leptonic decays of the weak

gauge bosons to extract a signal.

The channel with the second largest cross section at the LHC is vector boson

fusion (V BF ), qq → qqh, where the initial state quarks both emit weak gauge

bosons, which then annihilate into a Higgs boson (third diagram in Fig. 2.3). This

process is heavily suppressed at the Tevatron (because of the pp̄ initial state), but

provides an especially distinct final state (two very forward jets) at the LHC. For low

and intermediate Higgs masses, the distinctive final state of V BF has been shown

to greatly help in disentangling this signal from the hadronic backgrounds.

Finally, we consider the production of a Higgs boson with a pair of heavy quarks

(Fig 2.4). This channel is sub-leading at both the Tevatron and the LHC, but has

a great physics potential. Although tt̄h production is too small to be seen at the

Tevatron, given the expected luminosities, this channel will be of utmost importance

for a light Higgs boson (Mh ≤ 130 GeV) at the LHC. Despite the small cross section,

Higgs production with tt̄ pairs, followed by h → bb̄, displays a spectacular signal

(W+W−bb̄bb̄) which can be easily extracted from backgrounds. Also, given the

statistics expected at the LHC, pp → tt̄h will provide the only direct measurement

of the top quark Yukawa coupling. On the other hand, the production of a SM

Higgs boson with bottom quarks is suppressed by the smallness of the bottom quark

Yukawa coupling. Therefore, the bb̄h (h → bb̄) channel is the ideal candidate to

provide evidence for a non-SM Higgs sector, in particular an extension of the SM

like SUSY models where the bottom quark Yukawa coupling is enhanced. In fact,

first studies from the two experiments at the Tevatron (CDF [34] and D∅ [35]) have

already translated the absence of a bb̄+h0/H0/A0 signal into an upper bound on the

parameter tan β of the MSSM (see Fig. 2.7).
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Figure 2.5. The total cross sections for SM Higgs boson production at the Tevatron
(
√

sH = 1.96 TeV) [10].

2.3.3 SM Higgs boson searches at the Tevatron and the LHC

Despite lower luminosities than originally projected, discovering a Higgs boson

during Run II of the Tevatron is still among the major goals of the collider. In fact,

recent studies have shown that Run II can push the 95% C.L. upper limit much

farther than LEP2 (see Sect. 2.2). Also, depending on the integrated luminosity

accumulated, the Tevatron could still produce a 3σ or 5σ discovery for a light Higgs

boson.

The plot in Fig. 2.8 shows the integrated luminosity estimated to be necessary

to reach a 95% C.L. exclusion limit, the 3σ, and the 5σ discovery levels for Higgs

masses up to Mh = 200 GeV [36]. These curves are produced using qq̄ → hW, hZ

with h → bb̄ and h → W +W− over the entire Higgs mass range and gg → h with

h → ZZ for the upper mass region. From Fig. 2.8, we see that with, e.g., 10 fb−1

of integrated luminosity RUN II will be able to put a 95% C.L. exclusion limit on
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Figure 2.7. The 95% C.L. upper limit on tanβ as a function of MA0 from the
bb̄φ, φ = h0, H0, A0 search channel [35].
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Figure 2.8. Integrated luminosity required for each experiment at the Tevatron
Run II to exclude a SM Higgs boson at the 95% C.L. or to observe it at the 3σ or
5σ level [36].

a SM Higgs boson of mass up to 180 GeV, while it could claim a 3σ discovery of a

SM Higgs boson with mass up to 125 GeV. A 5σ discovery of a SM Higgs boson up

to 130 GeV, i.e. in the region immediately above the LEP2 lower bound, seems to

require 30 fb−1 of integrated luminosity, well beyond what is currently expected for

RUN II.

Even if a SM Higgs boson is not discovered at the Tevatron, the true test of its

existence will be provided by the LHC. Due to the larger CM energy, production

rates for the SM Higgs boson are significantly larger than those at the Tevatron as

shown in Fig. 2.6. In fact, at the LHC, all production modes will be accessible,

thanks to the higher statistics, and it becomes natural to distinguish between a light

(Mh < 130 − 140 GeV) and heavy (Mh > 130 − 140 GeV) mass region, as becomes

evident by simultaneously looking at both production cross sections (see Fig. 2.6)

and decay branching ratios (see Fig. 1.2) over the entire 115 − 1000 GeV SM Higgs

boson mass range. In the region of Mh <130 − 140 GeV the SM Higgs boson at the
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Figure 2.9. The significance for the SM Higgs boson discovery in various channels
at ATLAS as a function of the Higgs mass for 100 fb−1 data with no vector boson
fusion included (left) and 30 fb−1 data with vector boson fusion included for Mh < 200
GeV [37].

LHC will be searched mainly in the following channels:

gg → h , h → γγ, W +W−, ZZ

qq → qqh , h → γγ, W +W−, ZZ, τ+τ− (2.5)

qq̄, gg → tt̄h , h → bb̄, τ+τ−

while above that region, i.e. for Mh >130 − 140 GeV, the discovery modes will be:

gg → h , h → W +W−, ZZ

qq → qqh , h → γγ, W +W−, ZZ (2.6)

qq̄, gg → tt̄h , h → W +W−

The two LHC experiments (ATLAS and CMS) have used these channels to

estimate the discovery reach which is shown in Figs. 2.9 and 2.10 [37, 38]. The
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Figure 2.10. Luminosity required to reach a 5σ discovery signal in CMS, using
various detection channels, as a function of Mh [38].

ATLAS plots give the signal significance for a total integrated luminosity of 100 fb−1

(left plot) and of 30 fb−1 (right plot). The high luminosity (upper) plot belongs to

the original ATLAS technical design report [39], and the weak boson fusion channels

had not been studied in detail at that time. The lower luminosity (lower) plot is

taken from a more updated study [37], and the weak boson fusion channels have

been included in the low mass region, up to about Mh ' 200 GeV, where they play

an instrumental role towards discovery. Other instrumental channels in the low mass

region are the inclusive Higgs production with h → γγ and, below Mh = 130 GeV,

tt̄h production with h → bb̄. In the high mass region, the inclusive production

with h → ZZ, WW dominates, although CMS has found a substantial contribution

coming from weak gauge boson fusion with h → ZZ, WW .
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Figure 2.11. The total cross sections for MSSM Higgs boson production at the
Tevatron (

√
sH = 1.96 TeV) [10].

2.3.4 MSSM Higgs boson searches at the Tevatron and the LHC

Figures 2.11 and 2.12 summarize the production cross sections for the MSSM

Higgs bosons at the Tevatron and the LHC, for both small and large values of tanβ.

Here, we focus on the large values of tan β (right plots) where the phenomenology

can be quite different from that of the SM. Obviously, for large tan β, the only

relevant processes for h0/H0/A0 production are the gluon fusion process (which

proceeds mainly through a loop of bottom and, to a lesser extent, top quarks) and

the production of h0/H0/A0 in association with a pair of bottom quarks.

As discussed in Sect. 1.2.3, the CP-even scalar which has enhanced couplings to

bb̄ strongly depends on the value of the pseudoscalar mass, MA0 . For convenience,

we define ΦA to be that CP-even scalar which becomes pseudoscalar-like, i.e. the

Higgs boson which becomes nearly degenerate in mass with A0 and develops similar

30



�����������	�


�


�
�����������

� � �����! #"%$
&('*)+)-,/.�0214365 798+:

;=< 5 >@?BAC: DFE�E�ED�E�E

D�E%E

DFE

D

EHG D

EHG EBD

	 �	JI
K I
L I
M�M I

 � 
%I

NONP� I

���������9�	�


�


�

�����Q�R�S�OT
� � ���H�! #"%$

&('*)+)-,/.�0214365 7�8+:

;=< 5 >@?UAV: D�E�E�ED�E%E

D�E%E�E

DFE�E

D�E

D

EHG D

EHG EHD

Figure 2.12. The total cross sections for MSSM Higgs boson production at the
LHC (

√
sH = 14 TeV) [10].

(enhanced) couplings to bb̄. For example, in the decoupling (anti-decoupling) regime

discussed in Sect. 1.2.3, ΦA is identified with the H0(h0). Likewise, we define ΦH

to be the CP-even Higgs boson which becomes SM-like, i.e. ΦH = h0(H0) in the

decoupling (anti-decoupling) regime.

At the Tevatron, for high tan β, ΦA and A0 are both predominantly produced

through gg → ΦA, A0 and gg, qq̄ → bb̄ + ΦA/A0, followed mostly by the decays

ΦA/A0 → bb̄, τ+τ−. Due to large QCD backgrounds, though, extraction of a signal

from the gluon fusion mode may prove difficult. However, bb̄ + ΦA/A0 followed by

ΦA/A0 → bb̄, with bottom quarks identified in the final state (or tagged) should

be accessible, since the three and four jet backgrounds are not too large at the

Tevatron. As mentioned earlier, this channel is presently being utilized in the search

for an MSSM Higgs boson at both CDF [34] and D∅ experiments [35] at the Tevatron.

Indeed, Fig. 2.7 shows recent results from D∅ in which the bb̄ + ΦA/A0, ΦA/A0 → bb̄
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channel is being used to place limits on the value of tan β. Finally, detection

techniques for the SM-like Higgs (ΦH) rely heavily on those techniques outlined

above for the SM Higgs boson, especially in the mass range below 140 GeV. For

example, the dominant process for the production of ΦH would be pp̄ → Wh0(WH0)

in the decoupling (anti-decoupling) regime.

At the LHC, the situation is similar to the Tevatron case where, for large tanβ,

at least two of the MSSM (neutral) Higgs bosons will be produced predominantly

through gluon fusion and in association with bottom quarks. As can be seen in the

right hand plot of Figure 2.12, these channels dominate over the other production

modes by several orders of magnitude. In contrast to the situation at the Tevatron,

though, the cross section for production with bb̄ pairs becomes larger than that of

gluon fusion for H0 and A0 above 200 GeV. Unfortunately, the QCD four jet cross

section is large at the LHC and ΦA/A0 → bb̄ will not provide a measurable signal

if both bottom quarks are at high transverse momentum. Thus, one has to rely on

the sub-dominant decays to τ+τ− and µ+µ− pairs. Finally, in Fig. 2.13, we show the

coverage of the mA − tan β plane that will be provided by the LHC [40]. Evidently,

it may be possible at the LHC to either exclude the entire mA − tanβ plane (thereby

eliminating the MSSM Higgs sector as a viable model), or achieve 5σ discovery of at

least one of the MSSM Higgs bosons, independently of the value of tan β and MA.
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Figure 2.13. Regions in mA − tanβ plane in which up to four Higgs bosons of the
MSSM can be discovered at the LHC with 300 fb−1 data [40].

33



CHAPTER 3

ASSOCIATED HIGGS BOSON PRODUCTION

WITH TOP QUARKS

The associated production of a Higgs boson with a tt̄ pair can play a very

important role at hadron colliders as has been suggested by many studies over

the past several years [41, 42, 43, 44]. As we have seen in Section 2.3.2, tt̄h

production will play a crucial role in the discovery of a SM-like Higgs boson at

the LHC, if Mh < 130 GeV. Although the event rate is small, the signature is

quite distinctive (W +W−bb̄bb̄). Most importantly, though, this channel will be

instrumental at the LHC in determining the couplings of the Higgs boson to SM

particles and would provide the only direct measurement of the top quark Yukawa

coupling [45, 46, 47, 48, 49]. Although tt̄h production is probably beyond the reach

of the Tevatron, the production of a Higgs boson with bottom quarks will be central

to discovering a non-SM Higgs sector. Most of the discussion in this chapter applies

also to the case of bb̄h production which we present in Chapter 4.

The leading-order (LO) total cross section for pp̄(pp) → tt̄h has been known

for quite some time [50, 51]. However, as for any other hadronic process, the LO

prediction is plagued by a large dependence on the renormalization and factorization

scales (see Figs. 3.3 and 3.4) and, thus, does not provide a reliable result. Next-to-

leading order (NLO) QCD corrections are mandatory to reduce the scale dependence

and to obtain a precise prediction for the total and differential cross sections.

In this chapter, we present in detail the calculation of the NLO inclusive total

cross section for tt̄h production in the SM at both the Tevatron [30] and the LHC [29].
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The partonic processes responsible for tt̄h production involve both quark-antiquark

(qq̄) and gluon-gluon (gg) initial states. At the Tevatron (
√

sH = 1.96 TeV), the qq̄

process dominates, making up more than 95% of the total cross section, and the gg

process is effectively negligible. At the LHC (
√

sH = 14 TeV), the gg initial state

becomes dominant, although, the qq̄ process is not entirely negligible.

The main challenge in the calculation of the O(αs) virtual corrections comes

from the presence of pentagon diagrams with several massive external and internal

particles. The pentagon scalar and tensor Feynman integrals originating from these

diagrams present either analytical (scalar) or numerical (tensor) challenges. We have

calculated the pentagon scalar integrals as linear combinations of scalar box integrals

using the method of Ref. [52, 53], and cross checked them using the techniques of

Ref. [54]. Pentagon tensor integrals have been calculated and cross checked in two

ways: numerically, by isolating the numerical instabilities and extrapolating from

the numerically safe to the numerically unsafe region using various methods; and

analytically, by reducing them to a numerically stable form.

The real corrections (i.e. pp̄(pp) → tt̄h + g, q(q̄)) have been computed using the

phase space slicing method, in both the double [55] and single [56, 57, 58] cutoff

approaches. This is the first application of the single cutoff phase space slicing

method to a cross section involving more than one massive particle in the final state

and agreement between the two cutoff and the single cutoff approaches is a strong

check of the calculation.

The outline of this chapter is as follows. In Section 3.1, we summarize the general

structure of the NLO cross section for pp̄(pp) → tt̄h. In Section 3.2, we present

the calculation and numerical results for the LO cross sections for pp̄(pp) → tt̄h.

Section 3.3 gives a detailed account of the virtual corrections to both qq̄ → tt̄h and

gg → tt̄h, where we also discuss the singular structure of the one-loop corrections

in the infrared and ultraviolet limits. In Section 3.4, we present the real corrections

to pp̄(pp) → tt̄h + g, q(q̄) in both the two-cutoff and the one-cutoff implementations
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of the Phase Space Slicing method. We proceed in Section 3.5 to present the full

analytic structure of the NLO QCD cross sections at the Tevatron and the LHC,

while we present our numerical results for both colliders in Section 3.6. We collect

most of the technical details, including a list of box and pentagon integrals, in a

series of Appendices.

3.1 The calculation: general setup

The inclusive total cross section for pp̄(pp) → tt̄h at O(α3
s) can be written as:

σNLO(pp̄(pp) → tt̄h) =
∑

ij

1

1 + δij

∫

dx1dx2

[

Fp
i (x1, µ)Fp(p̄)

j (x2, µ)σ̂ij
NLO

(x1, x2, µ) + (1 ↔ 2)
]

, (3.1)

where Fp(p̄)
i are the NLO parton distribution functions (PDFs) for parton i in a

proton (or antiproton), defined at a generic factorization scale µf = µ, and σ̂ij
NLO

is the O(α3
s) parton-level total cross section for incoming partons i and j, made of

the channels qq̄, gg → tt̄h and (q, q̄)g → tt̄h(q, q̄), and renormalized at an arbitrary

scale µr which we also take to be µr = µ. Throughout this chapter we will always

assume the factorization and renormalization scales to be equal, µr =µf =µ, unless

differently specified. The δij is an identical particle factor which takes the value 0

(1) for the qq̄ (gg) initiated process. The partonic center-of-mass energy squared, s,

is given in terms of the hadronic center-of-mass energy squared, sH, by s = x1x2sH

where x1 and x2 are the fractions of the hadron’s momenta carried by the partons.

As explained above, at the Tevatron, we consider only the qq̄ → tt̄h channel, summed

over all light quark flavors, and neglect the gg → tt̄h channel, since the gg initial state

is numerically irrelevant. At the LHC, we include both the qq̄ → tt̄h and gg → tt̄h

channels.

We write the NLO parton-level total cross section σ̂ij
NLO(x1, x2, µ) as:
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σ̂ij
NLO

(x1, x2, µ) = α2
s(µ)

{

f ij
LO

(x1, x2) +
αs(µ)

4π
f ij

NLO
(x1, x2, µ)

}

≡ σ̂ij
LO

(x1, x2, µ) + δσ̂ij
NLO

(x1, x2, µ) , (3.2)

where αs(µ) is the strong coupling constant renormalized at the arbitrary scale

µr = µ, σ̂ij
LO(x1, x2, µ) is the O(α2

s) Born cross section, and δσ̂ij
NLO(x1, x2, µ) consists

of the O(αs) corrections to the Born cross sections for gg, qq̄ → tt̄h and of the tree

level (q, q̄)g → tt̄h(q, q̄) processes, including the effects of mass factorization (see

Section 3.5). δσ̂ij
NLO(x1, x2, µ) can be written as the sum of two terms:

δσ̂ij
NLO

(x1, x2, µ) =

∫

d(PS3)
∑

|Avirt(ij → tt̄h)|2 +

∫

d(PS4)
∑

|Areal(ij → tt̄h + l)|2

≡ σ̂ij
virt(x1, x2, µ) + σ̂ij

real(x1, x2, µ) , (3.3)

where |Avirt(ij → tt̄h)|2 and |Areal(ij → tt̄h + l)|2 (for ij = qq̄, gg and l = g, or

ij = qg, q̄g and l = q, q̄) are respectively the O(α3
s) terms of the squared matrix

elements for the ij → tt̄h and ij → tt̄h + l processes, and
∑

indicates that they

have been averaged over the initial state degrees of freedom and summed over the

final state ones. Moreover, d(PS3) and d(PS4) in Eq. (3.3) denote the integration

over the corresponding three and four-particle phase spaces respectively. The first

term in Eq. (3.3) represents the contribution of the virtual one gluon corrections to

qq̄ → tt̄h and gg → tt̄h, while the second one is due to the real one gluon and real

one quark/antiquark emission, i.e. qq̄, gg → tt̄h + g and qg(q̄g) → tt̄h + q(q̄).

We observe that the scale dependence of the total cross section at NLO is dictated

by renormalization group arguments, and f ij
NLO(x1, x2, µ) in Eq. (3.2) must be of the

form:

f ij
NLO

(x1, x2, µ) = f ij
1 (x1, x2) + f̃ ij

1 (x1, x2) ln

(

µ2

s

)

, (3.4)

with f̃ ij
1 (x1, x2) given by:

f̃ ij
1 (x1, x2) = 2

{

4πb0f
ij
LO

(x1, x2) −
∑

k

[
∫ 1

ρ

dz1Pik(z1)f
kj
LO

(x1z1, x2)

+

∫ 1

ρ

dz2Pjk(z2)f
ik
LO

(x1, x2z2)

]}

, (3.5)
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where ρ = (2mt + Mh)
2/s, Pij(z) denotes the lowest-order regulated Altarelli-Parisi

splitting function [59] of parton i into parton j, when j carries a fraction z of the

momentum of parton i, (see e.g. Section 3.4), and b0 is determined by the one-loop

renormalization group evolution of the strong coupling constant αs:

dαs(µ)

d ln(µ2)
= −b0α

2
s + O(α3

s) , b0 =
1

4π

(

11

3
N − 2

3
nlf

)

, (3.6)

with N = 3, the number of colors, and nlf =5, the number of light flavors. The origin

of the terms in Eq. (3.5) will become manifest in Sections 3.3, 3.4, and 3.5 when we

describe in detail the calculation of both virtual and real O(αs) corrections.

In the Sections 3.3 and 3.4 we present the general structure of the O(αs) virtual

and real corrections to qq̄, gg → tt̄h. The contribution of the (q, q̄)g initiated process

will be considered in Section 3.4, when dealing with the real part of the O(α3
s)

cross section. The results presented in the following sections have been obtained by

two completely independent calculations, based on a combination of FORM [60] and

Maple codes in one case, and on the Mathematica based code Tracer [61] in the other.

The matrix elements squared for the tree level processes gg → tt̄h, gg → tt̄h+g, and

(q, q̄)g → tt̄h + (q, q̄) have been checked with Madgraph [62]. The numerical results

presented in Section 3.6 have been obtained with two independent Fortran codes.

3.2 The tree level cross sections

3.2.1 LO cross section for qq̄ → tt̄h

The Feynman diagrams contributing to the process

q(q1) + q̄(q2) → t(pt) + t̄(p′t) + h(ph) ,

where q1 +q2 = pt +p′t +ph are shown in Fig. 3.1. Using these diagrams, the tree-level

amplitude can be written as:
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q(q1)

q(q2)

t(pt)

t(pt′)

h(ph)

q(q1)

q(q2)

t(pt)

t(pt′)

h(ph)

Figure 3.1. Feynman diagrams contributing to the lowest order process, qq̄ → tt̄h.
The arrows indicate the momentum flow.

Aqq̄
0 = −ig2

s gtt̄h T aT a 1

s
v̄(q2) γµ u(q1) ū(pt)

[

A(1),qq̄,µ
0 + A(2),qq̄,µ

0

]

v(p′t) , (3.7)

where u(ū), v(v̄) are the initial and final state spinors, gs is the strong coupling

constant, gtt̄h = mt/v is the top quark Yukawa coupling, and s is the partonic CM

energy squared, i.e. s = (q1 + q2)
2. The subamplitudes A(1,2),qq̄

0 are given by:

A(1),qq̄,µ
0 =

(6 pt+ 6 ph + mt)γ
µ

(pt + ph)2 − m2
t

(3.8)

and

A(2),qq̄,µ
0 =

γµ(− 6 p′t− 6 ph + mt)

(p′t + ph)2 − m2
t

, (3.9)

where mt is the top quark mass. Finally, using Eqs. (3.7)-(3.9) the Born cross section

to qq → tth can be written in a closed analytic form given by [63]:

σ̂qq̄
LO

(x1, x2, µ) =
α2

s(µ)

27πs
g2

tt̄h

∫ xmax
h

xmin
h

dxh

[

4β̂

x2
h − β̂2

(

1 +
2m2

t

s

)(

4m2
t − M2

h

s

)

+ (3.10)

[

xh + 2

(

4m2
t − M2

h

s

)

+
2

xh

(4m2
t − M2

h)(2m2
t − M2

h)

s2
+

8m2
t

sxh

]

ln

(

xh + β̂

xh − β̂

)]

,

where xh = 2Eh/
√

s, Eh is the Higgs boson energy in the qq̄ center-of-mass frame,

xmin
h =2Mh/

√
s, xmax

h = 1 − 4m2
t /s + M2

h/s, and we have introduced:

β̂ =

{

[x2
h − (xmin

h )2][xmax
h − xh]

xmax
h − xh + 4m2

t /s

}1/2

. (3.11)
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3.2.2 LO cross section for gg → tt̄h

The tree level amplitude for the process

gA(q1) + gB(q2) → t(pt) + t̄(p′t) + h(ph) ,

where q1 + q2 = pt + p′t + ph and A, B denote the color of the incoming gluons,

is obtained from the three classes of Feynman diagrams represented in Fig. 3.2,

identified as s−channel, t−channel, and u−channel diagrams respectively. We find

it convenient to organize the color structure of both the tree level amplitude and

the one-loop virtual amplitude for gg → tt̄h in terms of only two color factors, one

symmetric and one antisymmetric in the color indices of the initial gluons. Following

this prescription, the tree level amplitude for gg → tt̄h can be written as:

Agg
0 = Anab

0 [T A, T B] + Aab
0 {T A, T B} , (3.12)

where T A,B = λA,B/2 in terms of the Gell-Mann matrices λA,B 1. Aab
0 and Anab

0

correspond to the terms in the amplitude that are proportional respectively to the

abelian (or symmetric) and non-abelian (or antisymmetric) color factors and are

explicitly given by:

Aab
0 =

1

2
(Agg

0,t + Agg
0,u) , Anab

0 = Agg
0,s +

1

2
(Agg

0,t −Agg
0,u) , (3.13)

where Agg
0,s, Agg

0,t, and Agg
0,u are the amplitudes corresponding to the sum of the

s−channel, t−channel, and u−channel tree level diagrams:

Agg
0,s = ig2

s gtt̄h εµ(q1) εν(q2) ūt(pt)Agg,µν
0,s vt̄(p

′
t) ,

Agg
0,t = ig2

s gtt̄h εµ(q1) εν(q2) ūt(pt)Agg,µν
0,t vt̄(p

′
t) ,

Agg
0,u = ig2

s gtt̄h εµ(q1) εν(q2) ūt(pt)Agg,µν
0,u vt̄(p

′
t) . (3.14)

1We note that the one-loop virtual amplitude can be expressed in terms of the same antisym-
metric color factor [T A, T B] and a symmetric color factor made of {T A, T B} and δAB .
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where εµ,ν are the polarization vectors of the initial-state gluons. The subamplitudes

Agg,µν
0,s , Agg,µν

0,t , and Agg,µν
0,u are given by:

Agg,µν
0,s = A(1),gg,µν

0,s + A(2),gg,µν
0,s ,

Agg,µν
0,t = A(1),gg,µν

0,t + A(2),gg,µν
0,t + A(3),gg,µν

0,t ,

Agg,µν
0,u = A(1),gg,µν

0,u + A(2),gg,µν
0,u + A(3),gg,µν

0,u , (3.15)

where the individual amplitudes for the s−channel, t−channel, and u−channel

diagrams in Fig. 3.2 are:

A(1),gg,µν
0,s =

1

s

6 pt+ 6 ph + mt

[(pt + ph)2 − m2
t ]

γαV µνα ,

A(2),gg,µν
0,s =

1

s
γα

− 6 p′t− 6 ph + mt

[(p′t + ph)2 − m2
t ]

V µνα ,

A(1),gg,µν
0,t =

6 pt+ 6 ph + mt

[(pt + ph)2 − m2
t ]

γµ 6 q2− 6 p′t + mt

[(q2 − p′t)
2 − m2

t ]
γν ,

A(2),gg,µν
0,t = γµ

6 pt− 6 q1 + mt

[(pt − q1)2 − m2
t ]

6 q2− 6 p′t + mt

[(q2 − p′t)
2 − m2

t ]
γν ,

A(3),gg,µν
0,t = γµ

6 pt− 6 q1 + mt

[(pt − q1)2 − m2
t ]

γν − 6 p′t− 6 ph + mt

[(p′t + ph)2 − m2
t ]

,

A(1),gg,µν
0,u = A(1),µν

0,t (µ ↔ ν, q1 ↔ q2) ,

A(2),gg,µν
0,u = A(2),µν

0,t (µ ↔ ν, q1 ↔ q2) ,

A(3),gg,µν
0,u = A(3),µν

0,t (µ ↔ ν, q1 ↔ q2) , (3.16)

with

V µνα = (q1 − q2)
αgµν + (q1 + 2q2)

µgνα − (2q1 + q2)
νgµα .

Due to the orthogonality between symmetric and antisymmetric color factors, the

tree level amplitude squared takes the very simple form:

∑

|Agg
0 |2 =

∑

[

N

2
(N2 − 1)

(

|Anab
0 |2 + |Aab

0 |2
)

− 1

N
(N2 − 1)|Aab

0 |2
]

, (3.17)

from which we can derive the LO partonic cross section, upon integration over the

final state phase space:

σ̂gg
LO

(x1, x2, µ) =

∫

d(PS3)
∑

|Agg
0 |2(x1, x2, µ) , (3.18)
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g
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t

t

Figure 3.2. Feynman diagrams contributing to the tree level process gg → tt̄h. The
circled crosses indicate all possible insertions of the final state Higgs boson leg, each
insertion corresponding to a different diagram.

where the dependence of |Agg
0 |2 on x1 and x2 (through s = x1x2sH) and on the

renormalization scale µ (through αs(µ))) has been made explicit.

When averaging over the polarization states of the initial gluons, the polarization

sum of the gluon polarization vectors, εµ(q1, λ1) and εν(q2, λ2), has to be performed

in such a way that only the physical (transverse) polarization states of the gluons

contribute to the matrix element squared. We adopt the general prescription:

∑

λi=1,2

εµ(qi, λi)ε
∗
ν(qi, λi) = −gµν +

niµqiν + qiµniν

ni · qi
− n2

i qiµqjν

(ni · qi)2
, (3.19)

where i=1, 2 and the arbitrary vectors ni have to satisfy the relations:

nµ
i

∑

λi=1,2

εµ(qi, λi)ε
∗
ν(qi, λi) = 0 , nν

i

∑

λi=1,2

εµ(qi, λi)ε
∗
ν(qi, λi) = 0 , (3.20)

together with n2
i 6=0 and n1 6=n2 We choose n1 =q2 and n2 =q1, such that:

∑

λi=1,2

εµ(qi, λi)ε
∗
ν(qi, λi) = −gµν + 2

q1µq2ν + q2µq1ν

s
. (3.21)

Finally, the entire calculation is performed using Feynman gauge for both internal

and external gluons.

3.2.3 LO predictions for pp̄(pp) → tt̄h

Figures 3.3 and 3.4 show the LO predictions for tt̄h production at the Tevatron

and LHC respectively as a function of the Higgs boson mass. These results are
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Figure 3.3. LO cross section for pp̄ → tt̄h at the Tevatron. The band is obtained by
varying the renormalization/factorization scale by factors of two around the central
value µ0 = mt + Mh/2.

obtained using the one-loop evolution of αs(µ) and by convoluting the partonic cross

sections (Eqs. (3.10) and (3.18)) with the CTEQ6L parton distribution functions.

The renormalization and factorization scales are set to a common scale which is then

varied by a factor of two in both directions around the central value, µ0 = mt+Mh/2,

to obtain the uncertainty bands shown in Figures 3.3 and 3.4. The dramatic variation

of more than a factor of ∼ 2 at the Tevatron and a factor ∼ 1.5 at the LHC within

the small interval µ0/2 < µ0 < 2µ0 shows that the LO prediction for the total cross

section pp̄(pp) → tt̄h is plagued by considerable uncertainties and, therefore, cannot

provide a reliable prediction. This underlines the need for NLO QCD corrections.

3.3 Virtual corrections

The O(αs) virtual corrections to the tree level processes qq̄, gg → tt̄h consist of

self-energy, vertex, box, and pentagon diagrams which are shown in Figs. 3.5-3.8 for

the qq̄-initiated process and in Figs. 3.9-3.12 for the gg-initiated process. The O(α3
s)

contribution to the virtual amplitude squared of Eq. (3.3) can then be written as:
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Figure 3.5. O(αs) virtual corrections: self-energy diagrams S
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∑

|Avirt(qq̄, gg → tt̄h)|2 =
∑

Dqq̄
i

∑

(

Aqq̄
0 Aqq̄∗

Di
+ Aqq̄∗

0 Aqq̄
Di

)

+
∑

Dgg
i,j

∑

(

Agg
0 Agg∗

Di,j
+ Agg∗

0 Agg
Di,j

)

=
∑

Dqq̄
i

∑

2Re
(

Aqq̄
0 Aqq̄∗

Di

)

+
∑

Dgg
i,j

∑

2Re
(

Agg
0 Agg∗

Di,j

)

, (3.22)
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Figure 3.6. O(αs) virtual corrections: vertex diagrams V
(1,2),qq̄
1 -V

(1,2),qq̄
6 .

where Aqq̄,gg
0 are the tree level amplitudes for the qq̄- and gg-initiated processes

respectively, while Aqq̄
Di

and Agg
Di,j

denote the amplitudes for classes of virtual

diagrams that only differ by the insertion of the final state Higgs boson leg, i.e.
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Figure 3.7. O(αs) virtual corrections: box diagrams Bqq̄
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(1,2),qq̄
2 and B

(1−4),qq̄
3 .

Dqq̄
i =

∑

k D
(k),qq̄
i and Dgg

i,j =
∑

k D
(k),gg
i,j with Dqq̄,gg

i = Sqq̄,gg
i , V qq̄,gg

i , Bqq̄,gg
i , P qq̄,gg

i ,

j = s, t, u, and k running over all possible Higgs boson insertions, as illustrated

in Figs. 3.5-3.12. The symbols S, V, B and P represent, respectively, the diagrams

containing self-energy, vertex, box and pentagon loops, while the index i labels a

particular diagram in these subsets.
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Figure 3.9. O(αs) virtual corrections to gg → tt̄h: self-energy diagrams. The
shaded blobs denote standard one-loop QCD corrections to the gluon and top quark
propagators respectively. The circled crosses denote all possible insertions of the
final state Higgs boson leg, each insertion corresponding to a different diagram. All

t-channel diagrams (labeled as S
(j),gg
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The amplitude of each virtual diagram (Aqq̄
Di

and Agg
Di,j

) is calculated as a linear

combination of fundamental Dirac structures with coefficients that depend on both

47



g

g

t

t

V1,s
(1,2)

g

g

t

t

V2,s
(1,2)

g

g

t

t

V3,s
(1,2)

g

g

t

t

V7,t
(1,2,3)

g

g

t

t

V8,t
(1,2,3)

g

g

t

t

V9,t
(1,2,3)

g

g

t

t

t

V4,t
(1,2)

g

g
t

t

h

V5,s
(1,2)

g

g

t

t

V6,s
(1,2)

g

g

t

t

h

V10,t
(1,2)

g

g

t

t

h

V10,t
(3,4)

Figure 3.10. O(αs) virtual corrections to gg → tt̄h: vertex diagrams. The shaded
blobs denote standard one-loop QCD corrections to the ggg, gtt̄, or htt̄ vertices
respectively. The circled crosses denote all possible insertions of the final Higgs
boson leg, each insertion corresponding to a different diagram. Diagrams with a
closed fermion loop have to be counted twice, once for each orientation of the loop

fermion line. All t-channel diagrams (labeled as V
(j),gg
i,t ) have corresponding u-channel

diagrams.
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Figure 3.11. O(αs) virtual corrections to gg → tt̄h: box diagrams. The circled
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corresponding to a different diagram. Diagrams with a closed fermion loop have to
be counted twice, once for each orientation of the loop fermion line. All t-channel

diagrams (labeled as B
(j),gg
i,t ) have corresponding u-channel diagrams.
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tensor and scalar one-loop Feynman integrals with up to five denominators. The

tensor integrals are further reduced in terms of scalar one-loop integrals using

standard techniques [64, 65]. A simple example of this reduction technique is given

in Appendix B. After the tensor integral reduction is performed, the fundamental

building blocks are one-loop scalar integrals with up to five denominators. They

may be finite or contain both ultraviolet (UV) and infrared (IR) divergences. The

finite scalar integrals are evaluated using the method described in Ref. [54] and

cross checked with the numerical package FF [66]. The singular scalar integrals are

calculated analytically by using dimensional regularization in d=4 − 2ε dimensions.

The most difficult integrals arise from IR divergent pentagon diagrams with several

external and internal massive particles. We calculate them as linear combination of

box integrals using the method of Ref. [52, 53] and of Ref. [54] generalized to the

case of several massive particles. Details of the box and pentagon scalar integrals
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used in this calculation are given in Appendix A. All other scalar integrals, with two

or three denominators, are commonly found in the literature.

In the tensor integral reduction, numerical problems can arise for higher rank

integrals with several denominators. In particular, the O(αs) virtual corrections to

gg → tt̄h involve pentagon tensor integrals of rank higher than one, i.e. Feynman

integrals with five denominators and more than one Lorentz tensor index. These

pentagon tensor integrals are not present in the corresponding corrections for

qq̄ → tt̄h. This introduces a new difficulty in the calculation, due to the numerical

instabilities that may arise as a consequence of the proportionality of the tensor

integral coefficients to higher powers of the inverse Gram determinant (GD) of the

full gg → tt̄h phase space (see Appendix B).

The coefficients of the linearly independent tensor structures can be found by

solving a system of linear equations, one for each independent tensor structure. As

a result, they are proportional to inverse powers of the so called Gram determinant

(GD), of the form GD = det(pi · pj) with pi and pj generic independent external

momenta (for i, j = 1, . . . , 4, since only four out of the five external momenta are

independent). The higher the rank of the original tensor integral, the higher the

inverse power of GD that appears in the coefficients of its tensor decomposition.

To briefly illustrate the problem, we parameterize the Gram determinant in terms

of the tt̄h phase space variables as

GD = − [s − (2mt + Mh)
2]

64
[M4

h + (s − s̄tt̄)
2 − 2M2

h(s + s̄tt̄)] s s̄tt̄ sin
2 θtt̄ sin2 φtt̄ sin2 θ ,

(3.23)

where s = x1x2sH is the partonic center-of-mass energy squared, and the tt̄h phase

space has been expressed in terms of a time-like invariant s̄tt̄ =(pt +p′t)
2, polar angles

(θ, θtt̄) and azimuthal angles (φ, φtt̄) in the center-of-mass frames of the incoming

gluons and of the tt̄ pair, respectively. As can be seen in Eq. (3.23), the Gram

determinant vanishes when two momenta become degenerate, i.e. at the boundaries
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of phase space. Near the boundary of phase space it can become arbitrary small,

giving rise to spurious divergences which cause serious numerical difficulties, since

they appear in various parts of the calculation that are normally numerically, not

analytically, combined. In the case of a 2 → 3 process, this problem arises for

pentagon tensor integrals, when all the independent external momenta are involved,

and it becomes more serious for higher rank tensor integrals. The probability that

the Monte Carlo integration hits a point close to the boundary of phase space is not

negligible and these points cannot just be discarded.

We use two methods to overcome this problem and find agreement within the

statistical uncertainty of the Monte Carlo phase space integration. In the first

method, we impose kinematic cuts to avoid the phase space regions where the

Gram determinant vanishes, and then extrapolate from the numerically safe to the

numerically unsafe region using different algorithms. We have used extrapolations

based on polynomial or trigonometric functions. We have also reproduced the

analytic dependence of each pentagon diagram on the Gram determinant, tested

it in the safe region of phase space, and used it to extrapolate to the unsafe region.

A phase space point is kept only if the true and the extrapolated results come very

close to each other, after repeated iterations. Each extrapolation has been repeated

imposing cuts on different kinematic variables, until a stable answer, independent

of the kinematic cuts, can be found. The details of the extrapolation procedure are

very technical and we do not think they can be of interest to this discussion. In the

second method, after having interfered the pentagon amplitudes with the Born matrix

element, we eliminate all pentagon tensor integrals by simplifying scalar products of

the loop momentum in the numerator against the propagators in the denominator

wherever possible. The resulting expressions are very large, but numerically very

stable, and we have used them to confirm the results obtained using the extrapolation

methods explained above.

52



Inserting all diagram contributions from qq̄, gg → tt̄h into Eq. (3.22), we

obtain the complete O(α3
s) contribution to the virtual amplitude squared, and

integrating over the final state phase space we calculate σ̂qq̄
virt and σ̂gg

virt in Eq. (3.3).

The UV singularities of the virtual cross section are regularized in d = 4 − 2εUV

dimensions and renormalized by introducing a suitable set of counterterms, while

the residual renormalization scale dependence is checked from first principles using

renormalization group arguments. The detailed renormalization procedure adopted

in this calculation is explained in Section 3.3.1.2. The IR singularities of the virtual

cross section are extracted in d=4− 2εIR dimensions and are canceled by analogous

singularities in the O(α3
s) real cross section. The structure of the IR singular

part of the virtual cross section is presented in Sections 3.3.1.3 and 3.3.2.2, while

the IR singularities of the real cross section are discussed in Section 3.4. The

explicit cancellation of IR singularities in the total inclusive NLO cross section for

qq̄, gg → tt̄h is outlined in Sections 3.4 and 3.5.

Finally, we note that the tree level amplitudes Aqq̄,gg
0 in Eq. (3.22) have to

generically be considered as the d-dimensional tree level amplitudes. This matters

when the Aqq̄
Di,

Agg
Di,j

amplitudes in Eq. (3.22) are UV or IR divergent. Actually, as will

be shown in the following, both UV and IR divergences are always proportional to the

tree level amplitudes or parts of it and they can be formally canceled without having

to explicitly specify the dimensionality of the tree level amplitude(s). After UV and

IR singularities have been canceled, everything is calculated in d=4 dimensions.

3.3.1 One-loop corrections to qq̄ → tt̄h

3.3.1.1 UV singularities

The UV singularities of the O(α3
s) qq̄ → tt̄h total cross section originate from

self-energy and vertex virtual corrections. These singularities are renormalized by

introducing counterterms for the wave function of the external fields (δZ
(q)
2 , δZ

(t)
2 ), the

top-quark mass (δmt), and the coupling constants (δgtt̄h, δZαs
). The explicit forms
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of the counterterms will be given in Section 3.3.1.2. If we denote by ∆UV (S
(1,2),qq̄
i )Aqq̄

0

and ∆UV (V
(1,2),qq̄
i )Aqq̄

0 the UV-divergent contribution of each self-energy (S
(1,2),qq̄
i ) or

vertex diagram (V
(1,2),qq̄
i ) to the virtual amplitude squared (see Eq. (3.22)), we can

write the UV-singular part of the total virtual amplitude squared as:

(σ̂qq̄
virt)UV −pole =

∫

d(PS3)
∑

|Aqq̄
0 |2

{

2
∑

i=1

∆UV (S
(1),qq̄
i + S

(2),qq̄
i ) +

6
∑

i=1

∆UV (V
(1),qq̄
i + V

(2),qq̄
i )

+ 2

[

(

δZ
(q)
2

)

UV
+
(

δZ
(t)
2

)

UV
+

δmt

mt
+ δZαs

]}

. (3.24)

As described earlier, we denote by |Aqq̄
0 |2 the matrix element squared of the tree-level

amplitude for qq̄ → tt̄h which can be computed in d = 4 dimensions since the quantity

in the curly brackets is free of UV singularities. We also notice that, in writing

Eq. (3.24), we have included in the top-quark self-energy the top-mass counterterm,

and we have used the fact that the Yukawa-coupling counterterm coincides with the

top-mass counterterm.

The UV-divergent contributions due to the individual diagrams are explicitly

given by:

∆UV

(

S
(1),qq̄
1 + S

(2),qq̄
1

)

=
αs

2π
Nt

(

N

2
− 1

2N

)(

− 1

εUV

)

,

∆UV

(

S
(1),qq̄
2 + S

(2),qq̄
2

)

=
αs

2π

[

Ns

(

5

3
N − 2

3
nlf

)

−Nt
2

3

](

1

εUV

)

,

∆UV

(

V
(1),qq̄
1 + V

(2),qq̄
1

)

=
αs

2π
Ns

(

− 1

2N

)(

1

εUV

)

,

∆UV

(

V
(1),qq̄
2 + V

(2),qq̄
2

)

=
αs

2π
Ns

(

N

2

)(

3

εUV

)

, (3.25)

∆UV

(

V
(1),qq̄
3 + V

(2),qq̄
3

)

=
αs

2π
Nt

(

− 1

2N

)(

1

εUV

)

,

∆UV

(

V
(1),qq̄
4 + V

(2),qq̄
4

)

=
αs

2π
Nt

(

N

2

)(

3

εUV

)

,

∆UV

(

V
(1),qq̄
5 + V

(2),qq̄
5

)

=
αs

2π
Nt

(

N

2
− 1

2N

)(

4

εUV

)

,

∆UV

(

V
(1),qq̄
6 + V

(2),qq̄
6

)

= 0 ,
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where Ns and Nt are standard normalization factors defined as:

Ns =

(

4πµ2

s

)ε

Γ(1 + ε) , Nt =

(

4πµ2

m2
t

)ε

Γ(1 + ε) . (3.26)

In this section we limit the discussion to the UV singularities only, while the

IR structure of the individual diagrams and counterterms will be considered in

Section 3.3.1.3. To this purpose we have explicitly denoted by εUV the pole parameter.

3.3.1.2 Counterterms

The counterterms needed to cancel the UV singularities described above are

defined as follows. Although, some counterterms contain IR divergences in addition

to the UV divergences discussed below, we wait until Section 3.3.1.3 to present the

IR structures.

For the external fields, we fix the wave-function renormalization constants of the

external light quark (q) and the top (t) quark fields using the on-shell subtraction

scheme:
(

δZ
(q)
2

)

UV
= −αs

4π
Ns

(

N

2
− 1

2N

)(

1

εUV

)

, (3.27)

(

δZ
(t)
2

)

UV
= −αs

4π
Nt

(

N

2
− 1

2N

)(

1

εUV

+ 4

)

, (3.28)

while we renormalize the wave-function of external gluons in the MS subtraction

scheme:

(δZ3)UV =
αs

4π
(4π)εΓ(1 + ε)

{(

5

3
N − 2

3
nlf

)

1

εUV

− 2

3

[

1

εUV

+ ln

(

µ2

m2
t

)]}

, (3.29)

according to which we also need to consider for gg → tt̄h the insertion of a

finite self-energy correction on the external gluon legs. This amounts to an extra

contribution

δUV =
αs

4π
(4π)εΓ(1 + ε)

(

5

3
N − 2

3
nlf

)

ln

(

µ2

m2
t

)

, (3.30)

which is important in order to obtain the correct scale dependence of the NLO cross

section.
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We define the subtraction condition for the top-quark mass mt in such a way that

mt is the pole mass, in which case the top-mass counterterm is given by:

δmt

mt

= −αs

4π
Nt

(

N

2
− 1

2N

)(

3

εUV

+ 4

)

. (3.31)

This counterterm has to be used twice: to renormalize the top-quark mass, in all

diagrams that contain a top quark self-energy insertion, and to renormalize the top

quark Yukawa coupling. As previously noted, the expressions in Eqs. (3.25) and

((3.41)) already include the top-mass counterterm.

Finally, for the renormalization of αs we use the MS scheme, modified to decouple

the top quark [67, 68]. The first nlf light flavors are subtracted using the MS

scheme, while the divergences associated with the top-quark loop are subtracted at

zero momentum:

δZαs
=

αs

4π
(4π)εΓ(1 + ε)

{(

2

3
nlf −

11

3
N

)

1

εUV

+
2

3

[

1

εUV

+ ln

(

µ2

m2
t

)]}

, (3.32)

such that, in this scheme, the renormalized strong coupling constant αs(µ) evolves

with nlf = 5 light flavors.

Using the results in Eqs. (3.25)-(3.32), it is easy to verify that (σ̂qq̄
virt)UV −pole

(Eq. (3.24)) is free of UV singularities and has a residual renormalization scale

dependence of the form:

σ̂qq̄,gg
LO

αs(µ)

2π

(

−2

3
nlf +

11

3
N

)

ln

(

µ2

s

)

, (3.33)

as expected by renormalization group arguments (see the first term of Eq. (3.5)). We

note that the presence of s in the argument of the logarithm of Eq. (3.33) has no

particular relevance. Choosing a different argument would amount to reabsorbing

some µ-independent logarithms in f ij
1 of Eq. (3.4).

3.3.1.3 IR singularities

This section describes the structure of the IR singularities originating from the

O(αs) virtual corrections to qq̄ → tt̄h. The virtual IR singularities come from
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the following set of diagrams: vertex diagrams V
(1,2),qq̄
1 and V

(1,2),qq̄
2 , box diagrams

B
(1,2),qq̄
2 , box diagrams B

(1−4),qq̄
3 , pentagon diagrams P qq̄

1 and P qq̄
2 , and from the wave

function renormalization of the external fields, δZ
(q)
2 and δZ

(t)
2 . The IR-singular

O(α3
s) virtual cross section for qq̄ → tt̄h can then be written as:

(σ̂qq̄
virt)IR−pole =

∫

d(PS3)
∑

|Aqq̄
LO
|2
{

∆IR

(

V
(1),qq̄
1 + V

(2),qq̄
1

)

+ ∆IR

(

V
(1),qq̄
2 + V

(2),qq̄
2

)

+
(

δZ
(q)
2

)

IR
+
(

δZ
(q)
2

)

IR
+ ∆IR

(

B
(1),qq̄
2 + B

(2),qq̄
2

)

+

+ ∆IR

(

B
(1),qq̄
3 + B

(3),qq̄
3 + P qq̄

1

)

+ ∆IR

(

B
(2),qq̄
3 + B

(4),qq̄
3 + P qq̄

1

)}

, (3.34)

where, as before, |Aqq̄
LO|2 denotes the matrix element squared of the tree-level

amplitude for qq̄ → tt̄h, in d = 4 dimensions. The IR-divergent contributions of

the various diagrams to the virtual amplitude squared are of the form ∆IR(Dqq̄
i )Aqq̄

0 :

∆IR

(

V
(1),qq̄
1 + V

(2),qq̄
1

)

=
(αs

2π

)

Ns

(

− 1

2N

)(

− 2

ε2
IR

− 4

εIR

)

,

∆IR

(

V
(1),qq̄
2 + V

(2),qq̄
2

)

=
(αs

2π

)

Ns

(

N

2

)(

− 4

εIR

)

,

(

δZ
(q)
2

)

IR
=
(αs

2π

)

Ns

(

N

2
− 1

2N

)(

1

εIR

)

, (3.35)

(

δZ
(t)
2

)

IR
=
(αs

2π

)

Nt

(

N

2
− 1

2N

)(

− 2

εIR

)

,

∆IR

(

B
(1),qq̄
2 + B

(2),qq̄
2

)

=
(αs

2π

)

Nt

(

− 1

N

)(

1

εIR

stt̄

(2m2
t + stt̄)βtt̄

Λtt̄

)

,

∆IR

(

B
(1),qq̄
3 + B

(3),qq̄
3 + P1

)

=
(αs

2π

)

Nt

(

N

2
− 1

N

)[

− 2

ε2
IR

+
2

εIR

(

ln

(

τ1

m2
t

)

+ ln

(

τ2

m2
t

))]

,

∆IR

(

B
(2),qq̄
3 + B

(4),qq̄
3 + P2

)

=
(αs

2π

)

Nt

(

− 1

N

)[

2

ε2
IR

− 2

εIR

(

ln

(

τ4

m2
t

)

+ ln

(

τ3

m2
t

))]

,

where Ns and Nt are given in Eq. (3.26), while εIR denotes that we are now considering

only singularities of IR origin. Moreover, we have introduced the following kinematic

invariants:

s= sqq̄ =2q1·q2 , stt̄ =2pt·p′t , τ1 =2q1·pt , τ2 =2q2·p′t , τ3 =2q2·pt , τ4 =2q1·p′t ,

(3.36)
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and we have defined

βtt̄ =

√

1 − 4m2
t

(pt + p′t)
2

, (3.37)

Λtt̄ = ln

(

1 + βtt̄

1 − βtt̄

)

.

Substituting the explicit expression for the IR-divergent contributions given in

Eq. (3.35) into Eq. (3.34) yields:

(σ̂qq̄
virt)IR−pole =

∫

d(PS3)
(αs

2π

)

Nt

∑

|Aqq̄
LO
|2
{

Xqq̄,virt
−2

ε2
IR

+
Xqq̄,virt

−1

εIR

+ δqq̄,IR

virt

}

,

(3.38)

where

Xqq̄,virt
−2 = −

(

N − 1

N

)

, (3.39)

Xqq̄,virt
−1 = N

[

−5

2
+ ln

(

τ1

m2
t

)

+ ln

(

τ2

m2
t

)]

+
1

N

[

− ln

(

s

m2
t

)

+
5

2
− stt̄

(2m2
t + stt̄)βtt̄

Λtt̄ − 2 ln

(

τ1τ2

τ4τ3

)]

,

while δqq̄,IR
virt is a finite term that derives from having factored out a common factor

Nt, and is given by:

δqq̄,IR

virt =

(

N − 1

N

)[

3

2
ln

(

s

m2
t

)]

+
1

N

[

1

2
ln2

(

s

m2
t

)]

. (3.40)

Finally, we note that the IR singularities of σqq̄
virt will be canceled by the corresponding

IR singularities of σqq̄
real.

3.3.2 One-loop corrections to gg → tt̄h

3.3.2.1 UV singularities

Self-energy and vertex one loop corrections to the tree level gg → tt̄h process

also give rise to UV divergences. These singularities are canceled by the same set of

counterterms introduced in Section 3.3.1.2.
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By carefully grouping subsets of self-energy and vertex diagrams, we can factor

out the UV singularities of the O(α3
s) virtual amplitude and write them in terms of the

tree level partial amplitudes Agg
0,s , Agg

0,t, and Agg
0,u introduced in Eq. (3.14). According

to the notation introduced in Figs. 3.9-3.12, we denote by Dgg
i,j (with Dgg =Sgg, V gg,

i = 1, 2, . . ., and j = s, t, u) a class of diagrams with a given self-energy or vertex

correction insertion, summed over all possible insertions of the external Higgs field,

one for each different diagram. We now define ∆UV (Agg
Di,j

) to be the UV pole part of

the corresponding amplitude. Using this notation, we find

∆UV (Agg
S1,s

) =
αs

4π

[

Ns

(

5

3
N − 2

3
nlf

)

−Nt
2

3

](

1

εUV

)

[T A, T B]Agg
0,s ,

∆UV (Agg
V1,s

) =
αs

4π

[

Ns

(

−2

3
N +

2

3
nlf

)

+ Nt
2

3

](

1

εUV

)

[T A, T B]Agg
0,s ,

∆UV (Agg
V2,s

+ Agg
V7,t

+ Agg
V7,u

) =
αs

4π
Nt

(

3

2
N − 1

2N

)(

1

εUV

)

Agg
0 ,

∆UV (Agg
V8,t

+ Agg
V8,u

) =
αs

4π
Nt

(

3

2
N − 1

2N

)(

1

εUV

)

×
(

1

2
(Agg

0,t −Agg
0,u)[T

A, T B] +
1

2
(Agg

0,t + Agg
0,u){T A, T B}

)

,

∆UV (Agg
V3,s

+ Agg
V9,t

+ Agg
V9,u

) =
αs

4π
Nt

(

N

2
− 1

2N

)(

4

εUV

)

A0 ,

∆UV (Agg
S2,s

+ Agg
S3,t

+ Agg
S3,u

+ Agg
S4,t

+ Agg
S4,u

) =
αs

4π
Nt

(

N

2
− 1

2N

)(

− 1

εUV

)

×
(

Agg
0 +

1

2
(Agg

0,t −Agg
0,u)[T

A, T B] +
1

2
(Agg

0,t + Agg
0,u){T A, T B}

)

,

(3.41)

where nlf =5 corresponds to the number of light quark flavors, N =3 is the number

of colors, Ns and Nt are given in Eq.( 3.26) and we have already included in the top

quark self-energy diagrams the top mass counterterm. Using these expressions, we

find that the UV-singular part of the total virtual amplitude squared for gg → tt̄h

can be written as:
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(σ̂gg
virt)UV −pole =

∫

d(PS3)
∑

Di,j

∑

2Re
(

Agg
0 ∆UV (Agg∗

Di,j
)
)

+

2σ̂gg
LO

[

(

δZ
(t)
2

)

UV
+ (δZ3)UV

+ δUV +
δmt

mt
+ δZαs

]

(3.42)

We again notice that some of the UV divergent virtual corrections (V gg
1,s , V gg

7,(t,u),

and V gg
8,(t,u)), as well as δZ

(t)
2 and δZ3 in Eqs. (3.28) and (3.29) above, also have IR

singularities. Again, in this section we limit the discussion to the UV singularities

only, while the IR structure of these terms will be considered in Section 3.3.2.2. To

this purpose we have explicitly denoted by εUV the pole parameter.

Using the above results and the results from Section 3.3.1.2 , it is easy to

verify that (σ̂gg
virt)UV −pole (Eq. (3.42)) is free of UV singularities and has a residual

renormalization scale dependence of the form:

σ̂qq̄,gg
LO

αs(µ)

2π

(

−2

3
nlf +

11

3
N

)

ln

(

µ2

s

)

, (3.43)

as expected by renormalization group arguments (see the first term of Eq. (3.5)).

3.3.2.2 IR singularities

The structure of the IR singularities originating from the O(αs) virtual corrections

to the tree level amplitude for gg → tt̄h is more involved than for the UV singularities.

However, it simplifies considerably when given at the level of the amplitude squared,

and this is what we present in this section.

The IR divergent part of the O(α3
s) virtual amplitude squared for gg → tt̄h can

be written in the following compact form:

∑

Dgg
i,j

∑

2Re
(

Agg
0 ∆IR(Agg∗

Di,j
)
)

=
αs

2π
Nt

∑

(

C1M(1),gg
V,ε + C2M(2),gg

V,ε + C3M(3),gg
V,ε

)

,

(3.44)

where Nt is defined in Eq. (3.26) and we denote by ∆IR(Agg
Di,j

) the IR pole part of

the amplitude of a given Dgg
i,j class of diagrams. The result is organized in terms of

leading and subleading color factors:
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C1 =
N2

4
(N2 − 1) ,

C2 = −1

4
(N2 − 1) ,

C3 =

(

1 +
1

N2

)

(N2 − 1) , (3.45)

and the corresponding matrix elements squared M
(1),gg
V,ε , M

(2),gg
V,ε , and M

(3),gg
V,ε are given

by:

M(1),gg
V,ε =

[

− 4

ε2
IR

+
2

εIR

(−2 + Λσ)

]

(

|Anab
0 |2 + |Aab

0 |2
)

+
1

εIR

[

(Λτ1 + Λτ2) |Agg
0,s + Agg

0,t|2 + (Λτ3 + Λτ4) |Agg
0,u −Agg

0,s|2
]

,

M(2),gg
V,ε =

[

− 8

ε2
IR

+
4

εIR

(−2 + Λτ1 + Λτ2 + Λτ3 + Λτ4)

]

|Aab
0 |2

+
2

εIR

s̄tt̄ − 2m2
t

s̄tt̄βtt̄

Λtt̄

(

|Anab
0 |2 + |Aab

0 |2
)

,

M(3),gg
V,ε =

1

εIR

s̄tt̄ − 2m2
t

s̄tt̄βtt̄

Λtt̄|Aab
0 |2 , (3.46)

where the IR nature of the pole terms has been made explicit. Aab
0 and Anab

0 are

defined in Eq. (3.13), while Agg
0,s, Agg

0,t, and Agg
0,u are given explicitly in Eq. (3.14).

Moreover, βtt̄ and Λtt̄ are given in Eq. (3.37) and we have defined:

s̄tt̄ = (pt + p′t)
2 , (3.47)

and we have introduced the notation: Λσ = ln(σ/m2
t ) and Λτi

= ln(τi/m
2
t ) where

σ = (q1 + q2)
2 , (3.48)

and the τi’s are given in Eq. (3.36). When we add the IR singularities coming from

the counterterms given in Eq. (3.35), we can write the complete pole part of the IR

singular O(α3
s) virtual cross section for gg → tt̄h as:

(σ̂gg
virt)IR−pole =

∫

d(PS3)
∑

Dgg
i,j

∑

2Re
(

Agg
0 ∆IR(Agg∗

Di,j
)
)

+ 2σ̂gg
LO

(

(

δZ
(t)
2

)

IR
+ (δZ3)IR

)
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=

∫

d(PS3)
αs

2π
Nt

∑

(

C1M(1),gg
V,ε + C2M(2),gg

V,ε + C3M(3),gg
V,ε

)

+
αs

2π
Nt

(

2

3
nlf − 8

3
N +

1

N

)

1

εIR

σ̂gg
LO

. (3.49)

As will be demonstrated in Section 3.4, the IR singularities of σ̂gg
virt are canceled by

the corresponding IR singularities of σ̂gg
real.

3.4 Real-emission corrections

q1

q2

pt

pt′

ph

k
q1

q2

pt

pt′

ph

k

Figure 3.13. O(αs) real corrections to qq̄ → tt̄h: examples of initial and final state
real gluon emission.

The NLO real cross sections σ̂qq̄,gg
real in Eq. (3.3) correspond to the O(αs) corrections

to qq̄, gg → tt̄h due to the emission of a real gluon, i.e. to the processes qq̄, gg →
tt̄h + g, examples of which are illustrated in Figs. 3.13 and 3.14. These cross

sections contain IR singularities which cancel the analogous singularities present

in the O(αs) virtual corrections (see Sections 3.3.1.3 and 3.3.2.2) and in the NLO

parton distribution functions. These singularities can be either soft, when the energy

of the emitted gluon becomes very small, or collinear, when the final state gluon is

emitted collinear to one of the initial gluons. There is no collinear radiation from the

final t and t̄ quarks because they are massive and their mass effectively regulates any

collinear divergences. At the same order in αs, the σ̂qg
real cross section corresponds to

the tree level processes (q, q̄)g → tt̄h + (q, q̄), an example of which is also illustrated

in Fig. 3.14. This part of the NLO cross section develops IR singularities entirely due
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g

g

t

t

g(k)
g

g

t

t

g(k)

q,q(k)

g

q,q(k)

t

t

Figure 3.14. Examples of O(αs) real corrections to gg → tt̄h (first two diagrams)
and of the tree level (q, q̄)g → tt̄h(q, q̄) processes (third diagram). The circled
crosses denote all possible insertions of an external Higgs boson leg, each insertion
corresponding to a different diagram.

to the collinear emission of a final state quark or antiquark from one of the initial

state massless partons.

The IR singularities encountered in the calculation of the real cross section can be

conveniently isolated by slicing the qq̄, gg → tt̄h + g and (q, q̄)g → tt̄h + (q, q̄) phase

spaces into different regions defined by suitable cutoffs, a method which goes under

the general name of Phase Space Slicing (PSS). The dependence on the arbitrary

cutoff(s) introduced in slicing the phase space of the final state particles is not

physical, and cancels at the level of the total real hadronic cross section, i.e. in

σreal, as well as at the level of the real cross section for each separate channel, i.e.

in σqq̄
real, σgg

real, and σqg
real. This cancellation constitutes an important check of the

calculation and will be discussed in detail in Section 3.5.

We have calculated the cross section for the processes

q(q1) + q̄(q2) → t(pt) + t̄(p′t) + h(ph) + g(k) ,

g(q1) + g(q2) → t(pt) + t̄(p′t) + h(ph) + g(k) ,

and

(q, q̄)(q1) + g(q2) → t(pt) + t̄(p′t) + h(ph) + (q, q̄)(k) ,
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with q1 +q2 = pt +p′t +ph+k, using two different implementations of the PSS method

which we call the two-cutoff and one-cutoff methods respectively, depending on the

number of cutoffs introduced. The two-cutoff implementation of the PSS method

was originally developed to study QCD corrections to dihadron production [69] and

has since then been applied to a variety of processes (for a review see, e.g. [55]).

The one-cutoff PSS method was developed for massless quarks in Ref. [56, 57] and

extended to the case of massive quarks in Ref. [58].

In the following sections we discuss the application of the PSS method to the

qq̄-, gg and (qq̄)g-initiated process separately, using the two-cutoff implementation

in Section 3.4.1 and the one-cutoff implementation in Section 3.4.2. The results for

σreal obtained using PSS with one or two cutoffs agree within the statistical errors of

the Monte Carlo integration. In spite of the fact that both methods are realizations

of the general idea of phase space slicing, they have very different characteristics and

finding agreement between the two represents an important check of our calculation.

3.4.1 Phase Space Slicing method with two cutoffs

The general implementation of the PSS method using two cutoffs proceeds in two

steps. First, by introducing an arbitrary small soft cutoff δs, we separate the overall

integration of the qq̄, gg → tt̄h+g phase space into two regions according to whether

the energy of the final state gluon (k0 = Eg) is soft, i.e. Eg ≤ δs

√
s/2, or hard, i.e.

Eg > δs

√
s/2. The partonic real cross section of Eq. (3.3) can then be written as:

σ̂qq̄,gg
real = σ̂qq̄,gg

soft + σ̂qq̄,gg
hard , (3.50)

where σ̂qq̄,gg
soft is obtained by integrating over the soft region of the gluon phase

space, and contains all the IR soft divergences of σ̂qq̄,gg
real . To isolate the remaining

collinear divergences from σ̂qq̄,gg
hard , we further split the integration over the gluon

phase space according to whether the final state gluon is (σ̂qq̄,gg
hard/coll) or is not

64



(σ̂qq̄,gg
hard/non−coll) emitted within an angle θ from the initial state quarks or gluons

such that (1 − cos θ) < δc, for an arbitrary small collinear cutoff δc:

σ̂qq̄,gg
hard = σ̂qq̄,gg

hard/coll + σ̂qq̄,gg
hard/non−coll . (3.51)

In the same way, we isolate the collinear divergences in the cross section for the

(q, q̄)g initiated processes and write the corresponding cross section as:

σ̂qg
real = σ̂qg

coll + σ̂qg
non−coll . (3.52)

The hard non-collinear part of the real qq̄- and gg-initiated cross sections, σ̂qq̄
hard/non−coll

and σ̂gg
hard/non−coll, and the non-collinear part of the (q, q̄)g-initiated cross section,

σ̂qg
non−coll, are finite and can be computed numerically.

On the other hand, in the soft and collinear regions the integration over the phase

space of the emitted gluon or quark can be performed analytically, thus allowing us

to isolate and extract the IR divergences of σ̂qq̄,gg
real and σ̂qg

real. More details on the

calculations of σ̂qq̄
soft and σ̂gg

soft are given in Sections 3.4.1.1 and 3.4.1.2, respectively,

while details of the calculations of σ̂qq̄
hard and σ̂gg

hard are given in Section 3.4.1.3. The

calculation of σ̂qg
real is described in Section 3.4.1.4.

3.4.1.1 Soft gluon emission: qq̄ → tt̄h + g

The soft region of the qq̄ → tt̄h + g phase space is defined by requiring that the

energy of the gluon satisfies:

Eg < δs

√
s

2
, (3.53)

for an arbitrary small value of the soft cutoff δs. In the limit when the energy of

the gluon becomes small, i.e. in the soft limit, the matrix element squared for the

real gluon emission,
∑|Aqq̄

real|2, assumes a very simple form, i.e. it factorizes into the

Born matrix element squared times an eikonal factor Φqq̄
eik:

∑

|Areal(qq̄ → tt̄h + g)|2 soft−→ (4παs)
∑

|Aqq̄
LO
|2 Φqq̄

eik , (3.54)
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where the eikonal factor is given by:

Φqq̄
eik =

N

2

[

− m2
t

(pt ·k)2
− m2

t

(p′t ·k)2
+

τ1

(q1 ·k)(pt ·k)
+

τ2

(q2 ·k)(p′t ·k)

]

(3.55)

+
1

2N

[

m2
t

(pt ·k)2
+

m2
t

(p′t ·k)2
− s

(q1 ·k)(q2 ·k)
− stt̄

(pt ·k)(p′t ·k)

+2

(

− τ1

(q1 ·k)(pt ·k)
+

τ4

(q1 ·k)(p′t ·k)
+

τ3

(q2 ·k)(pt ·k)
− τ2

(q2 ·k)(p′t ·k)

)]

.

Moreover, in the soft region the qq̄ → tt̄h + g phase space also factorizes as:

d(PS4)(qq̄ → tt̄h + g)
soft−→ d(PS3)(qq̄ → tt̄h)d(PSg)soft (3.56)

= d(PS3)(qq̄ → tt̄h)
d(d−1)k

(2π)(d−1)2Eg
θ(δs

√
s

2
− Eg) ,

where d(PSg)soft denotes the integration over the phase space of the soft gluon. The

parton level soft cross section can then be written as:

σ̂qq̄
soft = (4παs) µ2ε

∫

d(PS3)
∑

|Aqq̄
LO
|2
∫

d(PSg)softΦ
qq̄
eik . (3.57)

Since the contribution of the soft gluon is now completely factorized, we can perform

the integration over d(PSg)soft in Eq. (3.57) analytically, and extract the soft poles

that will have to cancel Xqq̄,virt
−2 and Xqq̄,virt

−1 of Eq. (3.39). The integration over the

gluon phase space in Eq. (3.57) can be performed using standard techniques and we

refer to Refs. [55, 70] for more details. For sake of completeness, in Appendix C we

give explicit results for the soft integrals used in our calculation.

Finally, the soft gluon contribution to σ̂qq̄
real can be written as follows:

σ̂qq̄
soft =

αs

2π
Nt

∫

d(PS3)
∑

|Aqq̄
LO
|2
{

Xqq̄,s
−2

ε2
+

Xqq̄,s
−1

ε
+ NCqq̄,s

1 +
Cqq̄,s

2

N

}

, (3.58)

where

Xqq̄,s
−2 = −Xvirt

−2 , (3.59)

Xqq̄,s
−1 = −Xvirt

−1 −
(

N − 1

N

) [

3

2
+ 2 ln (δs)

]

,
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Cqq̄,s
1 =

3

2
ln

(

s

µ2

)

+ 2 ln2(δs) − 2 ln(δs)

[

1 + ln

(

m2
t µ

2

τ1τ2

)]

+
1

2
ln2

(

s

m2
t

)

− π2

3
− ln

(

s

m2
t

)[

5

2
+ ln

(

sm2
t

τ1τ2

)]

+
1

2

1

βt
ln

(

1 + βt

1 − βt

)

+
1

2

1

βt̄

ln

(

1 + βt̄

1 − βt̄

)

+
1

2

(

F (q1, pt) + F (q2, p
′
t)
)

+

[

3

2
+ 2 ln (δs)

]

ln

(

µ2

m2
t

)

,

Cqq̄,s
2 = −3

2
ln

(

s

µ2

)

− 2 ln2(δs)

− 2 ln(δs)

[

−1 +
stt̄

(2m2
t + stt̄)βtt̄

Λtt̄ + ln

(

s

µ2

)

+ 2 ln

(

τ1τ2

τ4τ3

)]

− 1

2
ln2

(

s

m2
t

)

+
π2

3
− ln

(

s

m2
t

)[

−5

2
+

stt̄

(2m2
t + stt̄)βtt̄

Λtt̄ + 2 ln

(

τ1τ2

τ4τ3

)]

− 1

2

1

βt
ln

(

1 + βt

1 − βt

)

− 1

2

1

βt̄

ln

(

1 + βt̄

1 − βt̄

)

+
stt̄

(2m2
t + stt̄)βtt̄

[

−1

4
ln2

(

1 + βt

1 − βt

)

+
1

4
ln2

(

1 + βt̄

1 − βt̄

)

−Li

(

1 − αtt̄

vtt̄

p0
t (1 + βt)

)

− Li

(

1 − αtt̄

vtt̄

p0
t (1 − βt)

)

+Li

(

1 − 1

vtt̄

p′0t (1 + βt̄)

)

+ Li

(

1 − 1

vtt̄

p′0t (1 − βt̄)

)]

+ −F (q1, pt) + F (q1, p
′
t) + F (q2, pt) − F (q2, p

′
t)

−
[

3

2
+ 2 ln (δs)

]

ln

(

µ2

m2
t

)

,

where

βi =

√

1 − m2
t

(p0
i )

2
, (3.60)

while

αtt̄ =
1 + βtt̄

1 − βtt̄

and vtt̄ =
m2

t (α
2
tt̄ − 1)

2(αtt̄p
0
t − p′0t )

. (3.61)

The factor Nt is defined in Eq. (3.26), and Li2 denotes the dilogarithm function. βtt̄

and Λtt̄ are defined in Eq. (3.37), while, for any initial parton i and final parton f ,

and the function F qq̄(pi, pf) can is given explicitly in Appendix C
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After adding Eqs. (3.39) and (3.59), the IR poles of the virtual corrections are

exactly canceled by the corresponding singularities in the soft gluon contribution and

we are left with:

σ̂qq̄
s+v ≡ (σ̂qq̄

soft)pole + (σ̂qq̄
virt)IR−pole =

αs

2π

(

N − 1

N

) [

−3

2
− 2 ln (δs)

]

1

ε
σ̂gg

LO
,

(3.62)

Note that, in this section and below, we do not explicitly denote the IR poles

as poles in εIR, since it is understood that all singularities present in σgg,qg
real are of

IR origin. These remaining IR poles will be canceled by the PDF counterterms as

described in detail in Sec. 3.5.

3.4.1.2 Soft gluon emission: gg → tt̄h + g

The soft region of the gg → tt̄h + g phase space is also defined by requiring that

the energy of the emitted gluon satisfies Eq. (3.53). In the soft limit (Eg → 0), the

amplitude for this process can be written as:

Asoft(gg → tt̄h + g) =

T CT AT B

(

pt ·ε∗
pt ·k

− q1 ·ε∗
q1 ·k

)

(

Agg
0,t + Agg

0,s

)

+ T CT BT A

(

pt ·ε∗
pt ·k

− q2 ·ε∗
q2 ·k

)

(

Agg
0,u −Agg

0,s

)

− T AT BT C

(

p′t ·ε∗
p′t ·k

− q2 ·ε∗
q2 ·k

)

(

Agg
0,t + Agg

0,s

)

− T BT AT C

(

p′t ·ε∗
p′t ·k

− q1 ·ε∗
q1 ·k

)

(

Agg
0,u −Agg

0,s

)

+ T AT CT B

(

q1 ·ε∗
q1 ·k

− q2 ·ε∗
q2 ·k

)

(

Agg
0,t + Agg

0,s

)

+ T BT CT A

(

q2 ·ε∗
q2 ·k

− q1 ·ε∗
q1 ·k

)

(

Agg
0,u −Agg

0,s

)

,

(3.63)

where A, B, and C are the color indices of the external gluons, while εµ(k, λ) (for

λ = 1, 2) is the polarization vector of the emitted soft gluon. Moreover, in the soft

region the gg → tt̄h + g phase space factorizes identically to Eq. (3.56), i.e:

d(PS4)(gg → tt̄h + g)
soft−→ d(PS3)(gg → tt̄h)d(PSg)soft

= d(PS3)(gg → tt̄h)
d(d−1)k

(2π)(d−1)2Eg
θ

(

δs

√
s

2
− Eg

)

,

(3.64)
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where d(PS4) and d(PS3) have been defined in Section 3.1, while d(PSg)soft denotes

the integration over the phase space of the soft gluon. Since the contribution of

the soft gluon is now completely factorized, we can perform the integration over

d(PSg)soft analytically, using dimensional regularization in d=4 − 2ε to extract the

soft poles that will have to cancel the corresponding singularities in Eqs. (3.49) and

(3.46). The integrals that we have used to perform the integration over the phase

space of the soft gluon are collected in Appendix C.

After squaring the soft amplitude Agg
soft, summing over the polarization of the

radiated soft gluon, and integrating over the soft gluon momentum, the pole part of

the parton level soft cross section reads

(σ̂gg
soft)pole =

∫

d(PS3)

(
∫

d(PSg)soft

∑

|Asoft(gg → tt̄h + g)|2
)

pole

=

∫

d(PS3)
αs

2π
Nt

∑

(

C1M(1),gg
S,ε + C2M(2),gg

S,ε + C3M(3),gg
S,ε

)

, (3.65)

where C1, C2, and C3 are defined in Eq. (3.45), while M(1),gg
S,ε , M(2),gg

S,ε , and M(3),gg
S,ε

represent the IR pole parts of the corresponding matrix elements squared, and can

be written as:

M(1),gg
S,ε = −M(1),gg

V,ε − 2

ε
(1 + 4 ln(δs))

(

|Anab
0 |2 + |Aab

0 |2
)

,

M(2),gg
S,ε = −M(2),gg

V,ε − 16

ε
ln(δs)|Aab

0 |2 +
2

ε

(

|Anab
0 |2 + |Aab

0 |2
)

,

M(3),gg
S,ε = −M(3),gg

V,ε +
1

ε
|Aab

0 |2 . (3.66)

After adding the IR divergent part of the parton level virtual cross section of

Eq. (3.49) we obtain:

σ̂gg
s+v ≡ (σ̂gg

soft)pole + (σ̂gg
virt)IR−pole =

αs

2π
Nt

[

−4N ln(δs) −
1

3
(11N − 2nlf )

]

1

ε
σ̂gg

LO
,

(3.67)

where we can see that the IR poles of the parton level virtual cross section are exactly

canceled by the corresponding singularities in the parton level soft gluon emission
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cross section. The residual divergences will be canceled by the soft+virtual part of

the PDF counterterm when convoluting with the gluon PDFs as will be demonstrated

in Section 3.5. The finite contribution to the parton level soft cross section is finally

given by

(σ̂gg
soft)finite =

∫

d(PS3)

(
∫

d(PSg)soft

∑

|Asoft(gg → tt̄h + g)|2
)

finite

=

∫

d(PS3)
αs

2π
Nt

∑

(

C1M(1),gg
S + C2M(2),gg

S + C3M(3),gg
S

)

,(3.68)

where the finite parts of the M(1),gg
S , M(2),gg

S , and M(3),gg
S matrix element squared

are explicitly given by:

M(1),gg
S =

[

−4

3
π2 + 4Λσ ln(δs) + 8 ln2(δs) − 2Λσ − 4 ln(δs)

+
1

βt
ln

(

1 + βt

1 − βt

)

+
1

βt̄

ln

(

1 + βt̄

1 − βt̄

)]

(

|Anab
0 |2 + |Aab

0 |2
)

+

[

(Λσ + 2 ln(δs)) (Λτ1 + Λτ2) +
1

2
F (q1, pt) +

1

2
F (q2, p

′
t)

]

|Anab
0 + Aab

0 |2

+

[

(Λσ + 2 ln(δs)) (Λτ3 + Λτ4) +
1

2
F (q2, pt) +

1

2
F (q1, p

′
t)

]

|Anab
0 −Aab

0 |2 ,

M(2),gg
S =

{

s̄tt̄ − 2m2
t

s̄tt̄

[

(2Λσ + 4 ln(δs))
1

βtt̄

Λtt̄ +
1

2
ln2

(

1 + βt

1 − βt

)

− 1

2
ln2

(

1 + βt̄

1 − βt̄

)

+2Li

(

1 − αtt̄

vtt̄

p0
t (1 + βt)

)

+ 2Li

(

1 − αtt̄

vtt̄

p0
t (1 − βt)

)

−2Li

(

1 − 1

vtt̄

p′0t (1 + βt̄)

)

− 2Li

(

1 − 1

vtt̄

p′0t (1 − βt̄)

)]

− 2Λσ − 4 ln(δs) +
2

βtt̄

Λtt̄

}

(

|Anab
0 |2 + |Aab

0 |2
)

+ 2

[

−4

3
π2 − 2Λ2

σ + 8 ln2(δs) + 2 (Λσ + 2 ln(δs)) (Λτ1 + Λτ2 + Λτ3 + Λτ4)

+F (q1, pt) + F (q2, p
′
t) + F (q2, pt) + F (q1, p

′
t)

− 4Λσ − 8 ln(δs) + +
2

βt
ln

(

1 + βt

1 − βt

)

+
2

βt̄

ln

(

1 + βt̄

1 − βt̄

)]

|Aab
0 |2 ,

M(3),gg
S =

1

2

{

s̄tt̄ − 2m2
t

s̄tt̄

[

(2Λσ + 4 ln(δs))
1

βtt̄

Λtt̄ +
1

2
ln2

(

1 + βt

1 − βt

)

− 1

2
ln2

(

1 + βt̄

1 − βt̄

)

+2Li

(

1 − αtt̄

vtt̄

p0
t (1 + βt)

)

+ 2Li

(

1 − αtt̄

vtt̄

p0
t (1 − βt)

)
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−2Li

(

1 − 1

vtt̄

p′0t (1 + βt̄)

)

− 2Li

(

1 − 1

vtt̄

p′0t (1 − βt̄)

)]

− 2Λσ − 4 ln(δs) + +
1

βt
ln

(

1 + βt

1 − βt

)

+
1

βt̄

ln

(

1 + βt̄

1 − βt̄

)}

|Aab
0 |2 . (3.69)

We note that βi is defined in Eq. (3.60), while βtt̄ and Λtt̄ are defined in Eq. (3.37). s̄tt̄

is given in Eq. (3.47), and finally the function F gg(pi, pf ) can be found in Appendix C

(Eq. (C.9)).

3.4.1.3 Hard gluon emission: qq̄, gg → tt̄h + g

The hard region of the final state gluon phase space is defined by requiring that

the energy of the emitted gluon is above a given threshold. As we discussed earlier,

this is expressed by the condition that

Eg > δs

√
s

2
, (3.70)

for an arbitrary small soft cutoff δs, which automatically assures that σ̂qq̄,gg
hard does not

contain soft singularities. However, a hard gluon can still give rise to singularities

when it is emitted at a small angle, i.e. collinear, to a massless incoming or outgoing

parton. In order to isolate these divergences and compute them analytically, we

further divide the hard region of the qq̄, gg → tt̄h+g phase space into a hard/collinear

and a hard/non-collinear region, by introducing a second small collinear cutoff δc.

The hard/non-collinear region is defined by the condition that both

2q1 ·k
Eg

√
s

> δc and
2q2 ·k
Eg

√
s

> δc (3.71)

are true. The contribution from the hard/non-collinear region, σ̂qq̄,gg
hard/non−coll, is finite

and we compute it numerically by using standard Monte Carlo integration techniques.

In the hard/collinear region, one of the conditions in Eq. (3.71) is not satisfied

and the hard gluon is emitted collinear to one of the incoming partons. In this region,

the initial state parton i with momentum qi is considered to split into a hard parton

i′ and a collinear gluon g, i → i′g, with qi′ =zqi and k=(1−z)qi. The matrix element
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squared for ij → tt̄h + g factorizes into the Born matrix element squared and the

unregulated Altarelli-Parisi splitting function Pii′ = P 4
ii′ + εP ′

ii′ for i → i′g, i.e.:

∑

|Areal(ij → tt̄h + g)|2 collinear−→ (4παs)
∑

|A0(i
′j → tt̄h)|2 2Pii′(z)

z sig

, (3.72)

where P 4
ii′ and P ′

ii′ denote the coefficients of the O(1) and O(ε) parts of Pii′, while

sig = 2qi ·k. In the case of qq̄ → tt̄h + g, the unregulated splitting function in d

dimensions is

Pii′(z) = Pqq(z) = CF

(

1 + z2

1 − z
− ε(1 − z)

)

(3.73)

while for the case of gg → tt̄h + g the initial partons are gluons and the unregulated

splitting function in d dimensions is (P ′
gg =0):

Pii′(z) = Pgg(z) = 2N

(

z

1 − z
+

1 − z

z
+ z(1 − z)

)

. (3.74)

Moreover, in the collinear limit, the ij → tt̄h + g phase space also factorizes as:

d(PS4)(ij → tt̄h + g)
collinear−→ d(PS3)(i

′j → tt̄h)
z d(d−1)k

(2π)(d−1)2Eg
θ

(

Eg − δs

√
s

2

)

×

θ (cos θig − (1 − δc))

d=4−2ε
= d(PS3)(i

′j → tt̄h)
1

Γ(1 − ε)

(4π)ε

16π2
z dz dsig [(1 − z)sig]

−ε ×

θ

(

(1 − z)

z
s′

δc

2
− sig

)

,

(3.75)

where d(PS4) and d(PS3) have been defined in Section 3.1, while the integration

range for sig in the collinear region is given in terms of the collinear cutoff, and we

have defined s′=2qi′·qj. The integral over the collinear gluon degrees of freedom can

then be performed analytically, and this allows us to explicitly extract the collinear

singularities of σ̂qq̄,gg
hard [55, 71] as:

σ̂qq̄,gg
hard/coll =

[

αs

2π

1

Γ(1 − ε)

(

4πµ2

m2
t

)ε](

−1

ε

)

δ−ε
c ×

{

∫ 1−δs

0

dz

[

(1 − z)2

2z

s′

m2
t

]−ε

Pii′(z) σ̂qq̄,gg
LO

(i′j → tt̄h) + (i ↔ j)

}

.(3.76)
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As usual, these initial state collinear divergences are absorbed into the parton

distribution functions as will be described in detail in Section 3.5.

3.4.1.4 The tree level processes (q, q̄)g → tt̄h + (q, q̄)

The extraction of the collinear singularities of σ̂qg
real is done in the same way as

described in Section 3.4.1.3 for the qq̄ and gg initial states. In the collinear region,

cos θiq > 1−δc, the initial state parton i with momentum qi is considered to split into

a hard parton i′ and a collinear quark q, i → i′q, with qi′ =zqi and k=(1− z)qi. The

matrix element squared for ij → tt̄h+q factorizes into the unregulated Altarelli-Parisi

splitting functions in d dimensions: Pii′ = P 4
ii′ + εP ′

ii′ and the corresponding Born

matrix elements squared. The ij → tt̄h + q phase space factorizes into the i′j → tt̄h

phase space and the phase space of the collinear quark. As a result, after integrating

over the phase space of the collinear quark, the collinear singularity of σ̂qg
real can be

extracted as:

σ̂qg
coll =

[

αs

2π

1

Γ(1 − ε)

(

4πµ2

m2
t

)ε](

−1

ε

)

δ−ε
c

∫ 1

0

dz

[

(1 − z)2

2z

s′

m2
t

]−ε

×

[Pqg(z) σ̂gg
LO

(g(q1′)g(q2) → tt̄h) + Pgq(z) σ̂qq̄
LO

(q(q1)q̄(q2′) → tt̄h)] . (3.77)

The collinear radiation of an antiquark in q̄g → tt̄h + q̄ is treated analogously. In

the case of (q, q̄)g → tt̄h + (q, q̄) we have two possible splittings: (q, q̄) → g(q, q̄) and

g → qq̄. The O(1) and O(ε) parts of the corresponding splitting functions are:

P 4
gq(z) =

1

2

(

z2 + (1 − z)2
)

,

P ′
gq(z) = −z(1 − z) ,

P 4
qg(z) =

N2 − 1

2N

(

1 + (1 − z)2

z

)

,

P ′
qg(z) = −N2 − 1

2N
z . (3.78)

Again, these initial state collinear divergences are absorbed into the parton distribu-

tion functions as will be described in detail in Section 3.5.
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3.4.2 Phase Space Slicing method with one cutoff

An alternative way of isolating both soft and collinear singularities is to divide

the phase space for the radiated parton into only two regions, according to whether

all partons can be resolved (the hard region) or not (the infrared or ir region). In the

case of qq̄, gg → tt̄h+g, the hard and ir regions are defined according to whether the

final state gluon can be resolved. The emitted gluon is considered as not resolved,

and therefore part of the ir cross section, when

sig = 2pi · k < smin (pi =q1, q2, pt, p
′
t) , (3.79)

for an arbitrary small cutoff smin, with k the final state gluon momentum which

becomes soft or collinear. In the case of (q, q̄)g → tt̄h+(q, q̄), the emitted (anti)quark

is considered as not resolved, and therefore part of the ir cross section, when

siq = 2pi · k < smin (pi =q1, q2, pt, p
′
t) , (3.80)

with k the final state (anti)quark momentum which becomes collinear. The partonic

real cross sections can then be written as the sum of two terms (ij = qq̄, gg, qg):

σ̂ij
real = σ̂ij

ir + σ̂ij
hard , (3.81)

where σ̂ij
ir includes the IR singularities, both soft and collinear, while σ̂ij

hard is finite.

Following the general idea of PSS, we calculate σ̂ij
ir analytically, while we evaluate

σ̂ij
hard numerically, using standard Monte Carlo integration techniques. Both σ̂ij

ir and

σ̂ij
hard depend on the cutoff smin, but the hadronic real cross section, σreal, is cutoff

independent after mass factorization, as will be shown in Section 3.5.

3.4.2.1 Real corrections to qq̄ → tt̄h + g

In order to calculate σ̂qq̄
ir we apply and generalize the formalism developed in

Refs. [56, 57, 58, 30] as follows.
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(a) We consider the crossed process h → qq̄tt̄+g which is obtained from qq̄ → tt̄h+g

by crossing all the initial state colored partons to the final state, while crossing

the Higgs boson to the initial state. For a systematic extraction of the IR

singularities within the one-cutoff method, we organize the amplitude for

h → qq̄tt̄ + g, Ah→qq̄tt̄g, in terms of colored ordered amplitudes [72]. Using

the color decomposition:

T a
c1c2T

a
c3c4 =

1

2

(

δc1c4δc3c2 −
1

N
δc1c2δc3c4

)

, (3.82)

we write Ah→qq̄tt̄g as the sum of four color ordered amplitudes Aqq̄
1 , . . . ,Aqq̄

4 as

follows:

Ah→qq̄tt̄g = igsδfqfq̄
δftft̄

1

2

(

δctcq̄
T a

cqct̄
Aqq̄

1 (pt, p
′
t, q1, q2, k) + T a

ctcq̄
δcqct̄

Aqq̄
2 (pt, p

′
t, q1, q2, k)

− 1

N
δctct̄

T a
cqcq̄

Aqq̄
3 (pt, p

′
t, q1, q2, k) − 1

N
T a

ctct̄
δcqcq̄

Aqq̄
4 (pt, p

′
t, q1, q2, k)

)

,(3.83)

where gs =
√

4παs, while (fq, fq̄, ft, ft̄) and (cq, cq̄, ct, ct̄) denote the flavor and

color indices of the various outgoing quarks. The amplitudes Aqq̄
i (pt, p

′
t, q1, q2, k)

(for i = 1, 2, 3, 4) correspond to the four possible independent color structures

that arise in the h → qq̄tt̄ + g process, and each Aqq̄
i contains terms describing

the emission of the gluon from a different pair of external quarks. We give

the explicit expressions for the Aqq̄
i amplitudes in Appendix D. Due to this

decomposition, the partonic cross section for h → qq̄tt̄ + g can be written in a

very compact form:

σ̂h→qq̄tt̄g =

∫

d(PS5)
∑

|Ah→qq̄tt̄g|2 , (3.84)

with

∑

|Ah→qq̄tt̄g|2 =

(

g2
sN

2

)(

N2 − 1

4

)

∑

{

|Aqq̄
1 |2 + |Aqq̄

2 |2+ (3.85)

1

N2

[

−2|Aqq̄
3 + Aqq̄

4 |2 + |Aqq̄
3 |2 + |Aqq̄

4 |2
]

}

.
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(b) Using the one-cutoff PSS method and the factorization properties of both the

color ordered amplitudes Aqq̄
i and the gluon phase space in the soft/collinear

limit, we extract the IR singularities of σ̂h→qq̄tt̄g into σ̂h→qq̄tt̄g
soft and σ̂h→qq̄tt̄g

coll as

follows:

σ̂h→qq̄tt̄g soft−→ σ̂h→qq̄tt̄g
soft =

∫

d(PS4)d(PSg)soft

∑

|Ah→qq̄tt̄g
soft |2 , (3.86)

σ̂h→qq̄tt̄g collinear−→ σ̂h→qq̄tt̄g
coll =

∫

d(PS4)d(PSg)coll

∑

|Ah→qq̄tt̄g
coll |2 , (3.87)

where we denote by d(PSg)soft (d(PSg)coll) the phase space of the gluon in

the soft (collinear) limit, while
∑|Ah→qq̄tt̄g

soft |2 (
∑|Ah→qq̄tt̄g

coll |2) represents the soft

(collinear) limit of Eq.(3.85). The explicit calculation of σ̂h→qq̄tt̄g
soft,coll is described

in detail below. The factorization of soft and collinear singularities for color

ordered amplitudes has been discussed in the literature mainly for the leading

color terms (O(N)). For our application of the one-cutoff PSS method, we will

have to extend these results to the subleading color terms (O(1/N)).

(c) Finally, the IR singular contribution σ̂ir in Eq. (3.81) consists of two terms:

σ̂ir = ˆ̄σqq̄
ir + σ̂qq̄

crossing . (3.88)

As described in detail below, ˆ̄σqq̄
ir is obtained by crossing q and q̄ to the initial

state and h to the final state in the sum of σ̂h→qq̄tt̄g
soft and σ̂h→qq̄tt̄g

coll , while σ̂qq̄
crossing

corrects for the difference between the collinear gluon radiation from initial and

final state partons [57], as will be discussed in detail in Sec. 3.5. As explicitly

shown below, the IR singularities of σ̂qq̄
virt of Sec. 3.3.1.3 are exactly canceled by

the corresponding singularities in ˆ̄σqq̄
ir . On the other hand, σ̂qq̄

crossing still contains

collinear divergences that will be canceled by the PDF counterterms when the

parton cross section is convoluted with the PDFs (see Sec. 3.5).

Soft gluon emission: h → qq̄tt̄ + g
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We first consider the case of soft singularities, when, in the limit of Eg →0 (soft

limit), one or more sig <smin (i= q, q̄, t, t̄). Using the factorization properties of the

color ordered amplitudes Aqq̄
i in the soft limit, the amplitude squared for h → qq̄tt̄+g

can be written as:

∑

|Ah→qq̄tt̄g|2 soft−→
∑

|Ah→qq̄tt̄g
soft |2 =

(

g2
sN

2

)

∑

|Ah→qq̄tt̄
LO

|2
{

fqt̄(g) + fq̄t(g)−(3.89)

1

N2
[ftt̄(g) + fqq̄(g) − 2 (fqt(g) − fqt̄(g) − fq̄t(g) + fq̄t̄(g))]

}

,

where, for any pair of partons (a, b) excluding the soft gluon, the soft functions fab(g)

are defined as:

fab(g) ≡ 4sab

sagsbg
− 4m2

a

s2
ag

− 4m2
b

s2
bg

, (3.90)

and, as before (see Eq. (3.36)),

sij ≡ 2pi · pj ,

both for massless and massive quarks. Ah→qq̄tt̄
LO is the tree level amplitude for the

process h → qq̄tt̄ as given by Eq. (D.1). We note that Eq. (3.89) corresponds

to the factorization property expressed in Eq. (3.54). Since, in the soft limit, the

h → qq̄tt̄ + g phase space also factorizes, in analogy to Eq. (3.56), we can integrate

out the soft gluon degrees of freedom and obtain the soft gluon part of the cross

section for h → qq̄tt̄ + g as:

σ̂h→qq̄tt̄g
soft =

∫

d(PS4)
∑

|Ah→qq̄tt̄
LO

|2
{

τ4 + τ3 −
1

N2
[Stt̄ + Sqq̄ − 2 (τ1 − τ4 − τ3 + τ2)]

}

,

where, for any pair of quarks (a, b), the integrated soft functions Sab are defined as:

Sab =
g2

sN

2

∫

d(PSg)soft(a, b, g)fab(g) . (3.91)

In the one-cutoff PSS method, the explicit form of the soft gluon phase space integral

is given by [58]:

d(PSg)soft(a, b, g) =
(4π)ε

16π2

λ(ε− 1
2)

Γ(1 − ε)

[

sagsbgsab − m2
bs

2
ag − m2

as
2
bg

]−ε
dsagdsbg ×

θ(smin − sag)θ(smin − sbg) , (3.92)
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where

λ = s2
ab − 4m2

am
2
b , (3.93)

and the integration boundaries for sag and sbg vary accordingly to whether a and b

are massive or massless quarks (see Ref. [58] for more details).

The explicit form of the integrated soft functions Sab is obtained by carrying out

the integration in Eq. (3.91). When both partons a and b are massless Sab is simply

given by [56]:

Sab =
αs

2π
N

1

Γ(1 − ε)

(

4πµ2

smin

)ε(
sab

smin

)ε
1

ε2
. (3.94)

When one parton is massive and the other is massless, the function Sab has the form

[58]:

Sab =
αs

2π
N

1

Γ(1 − ε)

(

4πµ2

smin

)ε(
sab

smin

)ε

×
{

1

ε2

[

1 − 1

2

(

sab

m2
t

)ε]

+
1

2ε

(

sab

m2
t

)ε

− 1

2
ζ(2) +

m2
t

sab

}

=
αs

2π
N

1

Γ(1 − ε)

(

4πµ2

smin

)ε

×
{

1

2ε2
+

1

2ε
+

1

2ε
ln

(

m2
t

smin

)

+
1

4
ln2

(

m2
t

smin

)

− 1

2
ln2

(

sab

m2
t

)

+
1

2
ln

(

sab

m2
t

)

+
1

2
ln

(

sab

smin

)

− 1

2
ζ(2) +

m2
t

sab

}

.

(3.95)

Lastly, when both partons are massive, i.e. when a= t and b= t̄, the integrated soft

function Stt̄ is [58]:

Stt̄ =
αs

2π
N

1

Γ(1 − ε)

(

4πµ2

smin

)ε
m2

t√
λtt̄

(

Js
1

ε
+ Ja + Jb

)

, (3.96)

where we have defined:

m2
t√

λtt̄

Js = 1 − stt̄

(2m2
t + stt̄)βtt̄

Λtt̄ ,

Ja = Js ln

(

τ 2
+λtt̄

sminm2
t

)

,
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Jb =
(

τ+ − τ−
)[

1 − 2 ln(τ+ − τ−) − ln(τ+)
]

+

(

τ+ + τ−
2

)[

ln

(

τ+

τ−

)

(

1 + 2 ln(τ+ − τ−)
)

+ Li2

(

1 − τ+

τ−

)

− Li2

(

1 − τ−
τ+

)]

+ 1 + τ−τ+

+ (τ− + τ+)

[

−1 − ln(τ+) ln(τ−) +
1

2
ln2(τ+)

]

, (3.97)

βtt̄ and Λtt̄ are defined in Eq. (3.37) while λtt̄ and τ± are given by:

λtt̄ ≡ s2
tt̄ − 4m4

t ,

τ± =
stt̄

2m2
t

±
√

(

stt̄

2m2
t

)2

− 1 . (3.98)

Finally, using Eqs. (3.91)-(3.92) and the expressions for the soft integrals, we can

derive the complete form of σ̂h→qq̄tt̄g
soft :

σ̂h→qq̄tt̄g
soft =

αs

2π

1

Γ(1 − ε)

(

4πµ2

m2
t

)ε ∫

d(PS4)
∑

|Ah→qq̄tt̄
LO

|2
{

X̃qq̄,s
−2

ε2
+

X̃qq̄,x
−1

ε
+ NC̃qq̄,s

1 +
C̃qq̄,s

2

N

}

,

(3.99)

where

X̃qq̄,s
−2 =

(

N − 1

N

)

,

X̃qq̄,s
−1 = N

[

1 + 2 ln

(

m2
t

smin

)]

− 1

N

[

ln

(

s

smin

)

+ ln

(

m2
t

smin

)

+ 1 − stt̄

(2m2
t + stt̄)βtt̄

Λtt̄

]

,

C̃qq̄,s
1 = 2 ln2

(

m2
t

smin

)

+ ln

(

m2
t

smin

)

− 1

2
ln2

(

τ4

m2
t

)

− 1

2
ln2

(

τ3

m2
t

)

+ ln

(

τ4τ3

m2
t smin

)

−ζ(2) + m2
t

(

1

τ4
+

1

τ3

)

, (3.100)

C̃qq̄,s
2 = −

[

1

2
ln2

(

m2
t

smin

)

+ ln

(

m2
t

smin

)(

ln

(

s

smin

)

+ 1 − stt̄

(2m2
t + stt̄)βtt̄

Λtt̄

)

+
1

2
ln2

(

s

smin

)

+
m2

t√
λtt̄

(Ja + Jb) + ln2

(

τ1

m2
t

)

− ln2

(

τ4

m2
t

)

− ln2

(

τ3

m2
t

)

+ ln2

(

τ2

m2
t

)

− 2 ln

(

τ1τ2

τ3τ4

)

− 2m2
t

(

1

τ1

− 1

τ4

− 1

τ3

+
1

τ2

)]

,
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where βtt̄ and Λtt̄ are defined in Eq. (3.37) and the functions Ja and Jb are given in

Eq. (3.97).

Collinear gluon emission: h → qq̄tt̄ + g

In the collinear limit when an external massless quark (i) and a hard gluon become

collinear and cluster to form a new parton (i′) (i + g → i′, with collinear kinematics:

pi =zpi′ and k=(1− z)pi′), the color ordered amplitudes factorize and the amplitude

squared for h → qq̄tt̄ + g can be written as:

∑

|Ah→qq̄tt̄g|2 collinear−→
∑

|Ah→qq̄tt̄g
coll |2 =

(

g2
sN

2

)

∑

|Ah→qq̄tt̄
LO

|2
{

f qg→q
t̄ + f q̄g→q̄

t (3.101)

− 1

N2

[

f qg→q
q̄ + f q̄g→q̄

q − 2
(

f qg→q
t − f qg→q

t̄ − f q̄→q̄
t + f q̄g→q̄

t̄

)]

}

.

The collinear functions f ig→i′

j contain the collinear singularity and are proportional

to the Altarelli-Parisi splitting function for ig → i′ (see Eq. (3.73)), i.e.:

f ig→i′

j ≡ 2

sig

(

1 + z2

1 − z
− ε(1 − z)

)

. (3.102)

Using this definition, we can see that Eq. (3.101) is equivalent to Eq. (3.72), although

q and q̄, the massless quarks, are now considered as final state quarks. The reason

why we use a more involved expression is because this allows us to match the collinear

and soft regions of the gluon phase space in a very natural way, as will be explained

in the following. In the same spirit, the lower index j of the collinear functions f ig→i′

j

keeps track of which color ordered amplitude a given collinear pole comes from.

Although seemingly useless at this stage, this will be crucial in deriving Eqs. (3.103)

and (3.104), where the integration over the collinear region of the gluon phase space

is performed in such a way to avoid to overlap with the soft gluon phase space

integration in Eqs. (3.91) and (3.91). Finally, we note that there is no f tg→t
t̄ or f t̄g→t̄

t

in Eq. (3.101) since the gluon emission from a massive quark does not give origin to

collinear singularities.
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In the collinear limit, the h → qq̄tt̄ + g phase space also factorizes, in complete

analogy to Eq. (3.75), provided the obvious changes between initial and final state

partons are taken into account. Therefore, we can integrate out analytically the

collinear gluon degrees of freedom and obtain the collinear part of the partonic cross

section for h → qq̄tt̄ + g as:

σ̂h→qq̄tt̄g
coll =

∫

d(PS4)
∑

|Ah→qq̄tt̄
LO

|2
{

Cqt̄ + Cq̄t −
1

N2
[Cqq̄ − 2 (Cqt − Cqt̄ − Cq̄t + Cq̄t̄)]

}

,

(3.103)

where, for any pair of quarks (i, j), the integrated collinear functions Cij are defined

as:

Cij =

(

g2
sN

2

)∫

d(PSg)coll(i, j, z)f ig→i′

j (z) = −
(

αsN

2π

)

1

Γ(1 − ε)

(

4πµ2

smin

)ε
1

ε
Iig→i′(z1, z2) .

(3.104)

The phase space of the collinear gluon can be written as:

d(PSg)coll(i, j, z) =
(4π)ε

16π2

1

Γ(1 − ε)
s−ε

ig dsig[z(1 − z)]−εdz θ(smin − sig) , (3.105)

and the integration boundaries on z are defined by the requirement that only one

sig verifies the condition sig < smin. This is necessary in order to avoid overlapping

with the region of phase space where the gluon is soft (see Eq. (3.91)), and it is

easily translated into an upper bound on the z integration, thanks to the structure

of Eqs. (3.91) and (3.103). In fact, each term in Eqs. (3.91) and (3.103) depends on

only two invariants, sig and sjg, and each term in σ̂h→qq̄tt̄h
coll corresponds to an analogous

term in σ̂h→qq̄tt̄g
soft (except that Ctt̄ is missing since there is no collinear emission from

t and t̄). Therefore, for each Cij we only need to require that when sig <smin:

sjg = (1 − z)s′ij > smin −→ z < 1 − smin

s′ij
= 1 − z2 . (3.106)

The lower bound on z is not constrained and the integration starts at z1 =0. For sake

of simplicity, and since this does not give origin to ambiguities, in the following we

will denote the s′ij invariants in Eq. (3.106) by sij. Finally, when the integration over
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the collinear gluon degrees of freedom is performed, one finds that the Iig→i′(z1, z2)

functions in Eq. (3.104) are of the form [56]:

Iig→i′(z1, z2) =

[(

z−ε
2 − 1

ε

)

− 3

4
+

(

π2

6
− 7

4

)

ε

]

+ O(ε2) . (3.107)

When i= q, q̄ and j = t, t̄, i.e. when one quark is massless and the other is massive,

the integrated collinear functions Cij are given by:

Cij = −
(

αsN

2π

)

1

Γ(1 − ε)

(

4πµ2

smin

)ε{[

ln

(

sij

smin

)

− 3

4

]

1

ε
+

1

2
ln2

(

sij

smin

)

(3.108)

+
π2

6
− 7

4
+ O(ε)

]

,

while when both i, j = q, q̄, i.e. when both quarks are massless,

Cqq̄ = −
(

αsN

2π

)

1

Γ(1 − ε)

(

4πµ2

smin

)ε{[

2 ln

(

s

smin

)

− 3

2

]

1

ε
+ ln2

(

s

smin

)

(3.109)

+
π2

3
− 7

2
+ O(ε)

]

.

Using these results, we can finally explicitly write the partonic cross section for

collinear gluon radiation as follows:

σ̂h→qq̄tt̄g
coll =

(αs

2π

) 1

Γ(1 − ε)

(

4πµ2

m2
t

)ε ∫

d(PS4)
∑

|Ah→qq̄tt̄
LO

|2

×
{

X̃qq̄,c
−1

ε
+ NC̃qq̄,c

1 +
C̃qq̄,c

2

N

}

, (3.110)

where

X̃qq̄,c
−1 = N

[

3

2
− ln

(

τ4

smin

)

− ln

(

τ3

smin

)]

(3.111)

+
1

N

[

−3

2
+ 2 ln

(

s

smin

)

− 2 ln

(

τ1τ2

τ4τ3

)]

,

C̃qq̄,c
1 = − ln

(

m2
t

smin

)(

ln

(

τ4

smin

)

+ ln

(

τ3

smin

)

− 3

2

)

−1

2
ln2

(

τ4

smin

)

− 1

2
ln2

(

τ3

smin

)

+
7

2
− π2

3
,

C̃qq̄,c
2 = ln2

(

s

smin

)

− ln2

(

τ1

smin

)

+ ln2

(

τ4

smin

)

+ ln2

(

τ3

smin

)

− ln2

(

τ2

smin

)

+ ln

(

m2
t

smin

)(

−3

2
+ 2 ln

(

s

smin

)

− 2 ln

(

τ1τ2

τ4τ3

))

+
π2

3
− 7

2
.
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IR-singular gluon emission: complete result for σ̂
qq̄

ir

As already described in the beginning of Sec. 3.4.2, the partonic cross section for

the IR-singular real gluon radiation for the process qq̄ → tt̄h using the one-cutoff

PSS method is given by

σ̂qq̄
ir = ˆ̄σqq̄

ir + σ̂qq̄
crossing

=
[

σ̂h→qq̄tt̄g
soft + σ̂h→qq̄tt̄g

coll

]

crossed
+ σ̂qq̄

crossing . (3.112)

Note that crossing σ̂h→qq̄tt̄g
soft and σ̂h→qq̄tt̄g

coll only implies the interchange of the momenta

of the quark and antiquark, since particle and antiparticle interchange under crossing.

In the case of soft gluon emission this can be easily verified by comparing Eq. (3.54)

with Eq. (3.89), after flipping helicities and momenta of the crossed particles. For

collinear gluon emission, the crossing is complicated by the difference between initial

and final state collinear radiation. Using σ̂h→qq̄tt̄g
soft,coll in Eqs. (3.99) and (3.110), σ̂qq̄

ir can

be explicitly written as:

σ̂qq̄
ir =

(αs

2π

)

Nt

∫

d(PS3)
∑

|Aqq̄
LO
|2
{

X̃qq̄,ir
−2

ε2
+

X̃qq̄,ir
−1

ε
+ C̃qq̄,ir

1 N + C̃qq̄,ir
2

1

N

}

,(3.113)

where

X̃qq̄,ir
−2 = −Xqq̄,virt

−2 , (3.114)

X̃qq̄,ir
−1 = −Xqq̄,virt

−1 ,

C̃qq̄,ir
1 = ln

(

m2
t

smin

)[

−2 ln

(

τ2

m2
t

)

− 2 ln

(

τ1

m2
t

)

+
7

2
− ln

(

m2
t

smin

)]

+ ln

(

τ2

m2
t

)

+ ln

(

τ1

m2
t

)

− ln2

(

τ2

m2
t

)

− ln2

(

τ1

m2
t

)

+
7

2
− π2

2
− ζ(2) + m2

t

(

1

τ2

+
1

τ1

)

,
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C̃qq̄,ir
2 = ln

(

m2
t

smin

)[

2 ln

(

s

m2
t

)

+ 4 ln

(

τ1τ2

τ4τ3

)

− 5

2
+ ln

(

m2
t

smin

)

+
stt̄

(2m2
t + stt̄)βtt̄

Λtt̄

]

+
1

2
ln2

(

s

m2
t

)

− 2 ln2

(

τ3

m2
t

)

+ 2 ln2

(

τ2

m2
t

)

+ 2 ln2

(

τ1

m2
t

)

− 2 ln2

(

τ4

m2
t

)

−2 ln

(

τ1τ2

τ3τ4

)

− 2m2
t

(

1

τ1

− 1

τ4

− 1

τ3

+
1

τ2

)

+
π2

2
− 7

2
− m2

t√
λtt̄

(Ja + Jb) .

while Nt is defined in Eq. (3.26), and Aqq̄
LO is the tree-level amplitude for qq̄ → tt̄h

in d=4 dimensions.

As described in detail in Ref. [57], σ̂qq̄
crossing is given by

σ̂qq̄
crossing = αs

∫ 1

0

dz σ̂qq̄
LO

(Xq→q(z) + Xq̄→q̄(z)) , (3.115)

where Xq→q(z) (Xq̄→q̄(z)) is the unrenormalized crossing function of Ref. [57], which

accounts for the difference between collinear gluon radiation off an initial or a final

state quark (antiquark):

Xq→q(z) = −CF

2π

(

4πµ2

smin

)ε
1

Γ(1 − ε)

(

1

ε

)

×
{[

3

2
− ε

(

π2

3
− 7

2

)]

δ(1 − z) +

[

1 + z2

[(1 − z)1+ε]+
− ε(1 − z)1−ε

]}

.(3.116)

3.4.2.2 Real corrections to gg → tt̄h + g

In order to calculate σ̂gg
ir we again apply and generalize the formalism developed

in Refs. [56, 57, 58, 30] as follows.

(a) We consider the crossed process

h(ph) → t(pt) + t̄(p′t) + gA(q1) + gB(q2) + gC(k) , (3.117)

obtained from gg → tt̄h + g by crossing all the initial state colored partons to

the final state, while crossing the Higgs boson to the initial state. All colored

partons are hence considered as final state partons. For a systematic extraction
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of the IR singularities within the one-cutoff method, we organize the amplitude

for h → ggtt̄ + g, Ah→ggtt̄+g
real , in terms of six colored ordered amplitudes, Agg

ijk,

which are the coefficients of all possible permutations of the color matrices

T A, T B, T C, i.e.:

Ah→ggtt̄+g
real =

∑

i,j,k=A,B,C
i6=j 6=k

Agg
ijk T i T j T k . (3.118)

The explicit color ordered amplitudes have very lengthy expressions and we do

not give them in this thesis. Since they are tree level amplitudes, they can

be easily obtained. In the following we will however discuss in detail their

properties in both the soft and collinear regions of the phase space of the extra

emitted gluon. In this respect, we note that decomposing Ah→ggtt̄+g
real in terms of

color ordered amplitudes Agg
ijk allows us to write the partonic real cross section

as:

σ̂h→ggtt̄+g
real =

∫

d(PS5)
∑

|Ah→ggtt̄+g
real |2 , (3.119)

where

∑

|Ah→ggtt̄+g
real |2 =

1

2






C1

∑

i,j,k=A,B,C
i6=j 6=k

|Agg
ijk|2

+C2

(

|Agg
ABC

+ Agg
ACB

+ Agg
CAB

|2 + |Agg
CBA

+ Agg
BAC

+ Agg
BCA

|2 + |Agg
CAB

+ Agg
CBA

+ Agg
BCA

|2 +

|Agg
ABC

+ Agg
BAC

+ Agg
ACB

|2 + |Agg
CAB

+ Agg
CBA

+ Agg
ACB

|2 + |Agg
ABC

+ Agg
BAC

+ Agg
BCA

|2
)

+ C3
1

4

∣

∣

∣

∣

∑

i,j,k=A,B,C
i6=j 6=k

Agg
ijk

∣

∣

∣

∣

2






(3.120)

is the full real amplitude squared, including both leading and subleading color

factors (see Eq. (3.45) for a definition of C1, C2, and C3). Each subamplitude

squared in Eq. (3.120) has very definite factorization properties in the soft or

collinear regions of the phase space of the extra emitted gluon.
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(b) Using the one-cutoff PSS method and the factorization properties of soft and

collinear divergences of the various amplitudes squared in Eq. (3.120), we

extract the IR singularities from σ̂h→ggtt̄+g
real in d = 4 − 2ε dimensions. In the

soft and collinear limits we obtain:

σ̂h→ggtt̄+g
real

soft−→ σ̂h→ggtt̄+g
soft =

∫

d(PS4)d(PSg)soft

∑

|Ah→ggtt̄+g
soft |2 ,(3.121)

σ̂h→ggtt̄+g
real

collinear−→ σ̂h→ggtt̄+g
coll =

∫

d(PS4)d(PSg)coll

∑

|Ah→ggtt̄+g
coll |2 ,(3.122)

where we denote by d(PSg)soft (d(PSg)coll) the phase space of the gluon gC in

the soft (collinear) limit. In both the soft and the collinear limits, the cross

section for h → ggtt̄ + g integrated over the phase space of the IR singular

gluon has the form:

σ̂h→ggtt̄+g
soft, coll =

∫

d(PS4)
1

N

∑

{

C1

[

KS,C(t; 1, 2; t̄) |A(c),gg
0,s + A(c),gg

0,t |2 + KS,C(t; 2, 1; t̄) |A(c),gg
0,u −A(c),gg

0,s |2
]

+C2

[

2 KS,C(t; t̄)
(

|Aab,(c)
0 |2 + |Anab,(c)

0 |2
)

+

4 (KS,C(t; 1; t̄) + KS,C(t; 2; t̄)) |Aab,(c)
0 |2

]

+ C3 KS,C(t; t̄) |Aab,(c)
0 |2

}

, (3.123)

where the tree level amplitudes for the crossed process h → ggtt̄, denoted

by A(c),gg
0,s , A(c),gg

0,t , and A(c),gg
0,u , as well as their linear combinations Aab,(c)

0 and

Anab,(c)
0 , can be obtained from the corresponding amplitudes for gg → tt̄h

given explicitly in Eq (3.14) by flipping momenta and helicities of the crossed

particles. The functions K are either evaluated in the soft (KS) or in the

collinear limit (KC), and will be explicitly given in Eqs. (3.125) and (3.129).

Moreover, we notice that the arguments of the KS,C functions are indices

i = 1, 2, t, t̄ denoting the external partons gA(q1), gB(q2), t(pt), and t̄(p′t)

respectively. The explicit forms of both the pole and finite parts of σ̂h→ggtt̄+g
soft

and σ̂h→ggtt̄+g
coll are given below.
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(c) Finally, the IR singular contribution σ̂gg
ir of Eq. (3.81) consists of two terms:

σ̂gg
ir = ˆ̄σgg

ir + σ̂gg
crossing . (3.124)

ˆ̄σgg
ir is obtained by crossing gA, gB to the initial state and h to the final state

in the sum of σ̂h→ggtt̄+g
soft and σ̂h→ggtt̄+g

coll , while σ̂gg
crossing corrects for the difference

between the collinear gluon radiation from initial and final state partons

[57, 30]. The IR singularities of σ̂gg
virt of Section 3.3.2.2 are exactly canceled

by the corresponding singularities in ˆ̄σgg
ir . On the other hand, σ̂gg

crossing still

contains collinear divergences that will be canceled by the PDF counterterms

when the parton cross section is convoluted with the gluon PDFs, as we will

show in Section 3.5.

Soft gluon emission: h → ggtt̄ + g

In the soft limit, the h → ggtt̄ + g phase space, as well as the full parton level

real amplitude squared, factorize the dependence on the degrees of freedom of the

soft emitted gluon, as illustrated in Eq. (3.121). The soft part of the parton level

cross section can be calculated analytically according to Eq. (3.123). The soft limit

of the K functions, KS, is explicitly given by:

KS(t; i, j; t̄) =
Ng2

s

2

∫

d(PSg)soft[fti(g) + fij(g) + fjt̄(g)] = Sti + Sij + Sjt̄ ,

KS(t; i; t̄) =
Ng2

s

2

∫

d(PSg)soft[fti(g) + fit̄(g)] = Sti + Sit̄ ,

KS(t; t̄) =
Ng2

s

2

∫

d(PSg)softftt̄(g) = Stt̄ , (3.125)

where i, j =1, 2 denote the two external hard gluons with momenta q1 and q2. The soft

functions fab and Sab are given by Eqs. (3.90) and (3.91), respectively. Additionally,

the soft gluon phase space is given by Eq. (3.92). Using these expressions and the
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analytic results for the Sab functions in Eqs. (3.95)-(3.96), the pole part of the parton

level soft cross section can be written as

(σ̂h→ggtt̄+g
soft )pole =

∫

d(PS4)
αs

2π
Nt ×

∑

{

C1

[

4

ε2
+

2

ε
+

2

ε
Λσ − 8

ε
Λmin

]

(

|Aab,(c)
0 |2 + |Anab,(c)

0 |2
)

+2C2

[

1

ε

(

1 − s̄tt̄ − 2m2
t

s̄tt̄βtt̄

Λtt̄

)

(

|Aab,(c)
0 |2 + |Anab,(c)

0 |2
)

+4

(

1

ε2
+

1

ε
− 2

ε
Λmin

)

|Aab,(c)
0 |2

]

+ C3
1

ε

[

1 − s̄tt̄ − 2m2
t

s̄tt̄βtt̄

Λtt̄

]

|Aab,(c)
0 |2

}

,

(3.126)

while the corresponding finite contribution is:

(σ̂h→ggtt̄+g
soft )finite =

∫

d(PS4)
αs

2π
Nt ×

∑

{

C1

[

(

Λ2
σ − 4ΛσΛmin − 4Λmin + 8Λ2

min − π2
)

(

|Aab,(c)
0 |2 + |Anab,(c)

0 |2
)

+

(

−1

2
Λ2

τ1
− 1

2
Λ2

τ2
+ Λτ1 + Λτ2 +

m2
t

st1

+
m2

t

st̄2

)

|A(c),gg
0,s + A(c),gg

0,t |2

+

(

−1

2
Λ2

τ3 −
1

2
Λ2

τ4 + Λτ3 + Λτ4 +
m2

t

st2
+

m2
t

st̄1

)

|A(c),gg
0,u −A(c),gg

0,s |2
]

+ C2

[(

−2Λmin

(

1 − s̄tt̄ − 2m2
t

s̄tt̄βtt̄

Λtt̄

)

+
2m2

t√
λtt̄

(Ja + Jb)

)

(

|Aab,(c)
0 |2 + |Anab,(c)

0 |2
)

+4

(

−4Λmin + 4Λ2
min − 2

3
π2 − 1

2
Λ2

τ1
− 1

2
Λ2

τ2
− 1

2
Λ2

τ3
− 1

2
Λ2

τ4

+Λτ1 + Λτ2 + Λτ3 + Λτ4 +
m2

t

st1

+
m2

t

st2

+
m2

t

st̄1

+
m2

t

st̄2

)

|Aab,(c)
0 |2

]

+ C3

[

−Λmin

(

1 − s̄tt̄ − 2m2
t

s̄tt̄βtt̄

Λtt̄

)

+
m2

t√
λtt̄

(Ja + Jb)

]

|Aab,(c)
0 |2

}

, (3.127)

where τi is defined in Eq (3.36), σ, Λσ, and Λτi
are defined in Eq. (3.48) and right

before it, s̄tt̄ is defined in Eq. (3.47), βtt̄ and Λtt̄ are defined in Eq. (3.37), λtt̄ is given

in Eq. (3.98), Λmin is:

Λmin = ln

(

smin

m2
t

)

, (3.128)

and the functions Ja and Jb are given in Eq. (3.97).
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Collinear gluon emission: h → ggtt̄ + g

In this case, collinear singularities arise when one of the two final state gluons i

(i=gA, gB) and the hard extra gluon g (g=gC) become collinear and cluster to form

a new parton i′ (also a gluon), i + g → i′, with the collinear kinematics: qi = zqi′

and k=(1− z)qi′ . In the collinear limit, the h → ggtt̄ + g phase space as well as the

full parton level real amplitude squared factorize the dependence on the degrees of

freedom of the collinear emitted gluon, as illustrated in Eq. (3.122). The collinear

part of the parton level cross section can be calculated analytically according to

Eq. (3.123). The collinear limit of the K functions, KC , is explicitly given by:

KC(t; i, j; t̄) =

∫

d(PSg)coll
Ng2

s

2
[f gg→i

tj + f gg→j
it̄ + 2nlff

qq̄→g]

= −αsN

2π

1

Γ(1 − ε)

(

4πµ2

smin

)ε
1

ε

[

Igg→g

(

smin

sti
,
smin

sij

)

+ Igg→g

(

smin

sij
,
smin

sjt̄

)

+2nlfIqq̄→g(0, 0)

]

,

KC(t; i; t̄) =

∫

d(PSg)coll
Ng2

s

2
[f gg→i

tt̄ + nlff
qq̄→g]

= −αsN

2π

1

Γ(1 − ε)

(

4πµ2

smin

)ε
1

ε

[

Igg→g(
smin

sti
,
smin

sit̄

) + nlfIqq̄→g(0, 0)

]

,

KC(t; t̄) = 0 , (3.129)

where i, j =1, 2 denote the two external hard gluons with momenta q1 and q2.

In the one-cutoff PSS method, the collinear gluon phase space factorizes and

is given in the previous section (Eq. (3.105)). The collinear functions f ig→i′

ab are

proportional to the Altarelli-Parisi splitting function for ig → i′ and explicitly

factorize the corresponding collinear pole, i.e. [56, 57]:

f ig→i′

ab =
2

N

Pig→i′(z)

sig
, (3.130)

where both i and i′ are gluons and therefore Pig→i′ corresponds to the Pgg(z) splitting

function given in Eq. (3.74). The lower indices a and b have been used to specify
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the integration boundaries on z. In order to avoid double counting between soft and

collinear regions of the phase space of gC, it is crucial to impose that only one sig at a

time becomes singular, i.e. satisfies the condition sig <smin. The advantage of having

reorganized the amplitude in terms of color ordered amplitudes, as in Eq. (3.118),

is that the f ig→i′

ab collinear functions have a very definite structure: they are all

proportional to (saisigsgb)
−1, for a, b= gA, gB, t, t̄, and the integration boundaries are

then found by imposing the conditions given in Eq. (3.106). The terms proportional

to f qq̄→g come from the fact that a pair of collinear final state massless quarks (nlf =5

is the number of massless flavors) can also mimic a gluon. The corresponding collinear

function is:

f qq̄→g =
2

N

Pqq̄→g(z)

sqq̄

, (3.131)

where both the O(1) and O(ε) parts of the splitting function Pqq̄→g are defined

in Eq. (3.78). Note that we do not attach any lower index to f qq̄→g because the

integration over z has no singularities and can be performed over the entire range

from z=0 to z=1.

The analytic form of the integrated collinear functions Igg→g(z1, z2) and Iqq̄→g(0, 0)

is obtained by carrying out the integration in Eq. (3.129), and is explicitly given by

[57]:

Igg→g(z1, z2) =
1

ε

(

z−ε
1 + z−ε

2 − 2
)

− 11

6
+

(

π2

3
− 67

18

)

ε + O(ε2) ,

Iqq̄→g(0, 0) =
1

N

(

1

3
+

5

9
ε

)

+ O(ε2) . (3.132)

Finally, using Eq. (3.123) and Eqs. (3.129)-(3.132), the pole part of the parton

level collinear cross section can be written as:

(σ̂h→ggtt̄+g
coll )pole =

∫

d(PS4)
αs

2π
Nt

1

ε
×

∑

{

C1

[(

−4Λσ + 8Λmin + 2

(

11

3
− 2

3

nlf

N

))

(

|Aab,(c)
0 |2 + |Anab,(c)

0 |2
)
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− (Λτ1 + Λτ2) |A(c)
0,s + A(c)

0,t |2 − (Λτ3 + Λτ4) |A(c)
0,u −A(c)

0,s|2
]

+ C2

[

−4 (Λτ1 + Λτ2 + Λτ3 + Λτ4) + 16Λmin + 4

(

11

3
− 2

3

nlf

N

)]

|Aab,(c)
0 |2

}

,

(3.133)

while the corresponding finite contribution is:

(σ̂h→ggtt̄+g
coll )finite =

∫

d(PS4)
αs

2π
Nt ×

∑

{

C1

[(

−2Λ2
σ − 12Λ2

min + 8ΛσΛmin − 2Λmin

(

11

3
− 2

3

nlf

N

)

−2

(

2

3
π2 − 67

9
+

10

9

nlf

N

))

(

|Aab,(c)
0 |2 + |Anab,(c)

0 |2
)

+

(

−1

2
Λ2

τ1
− 1

2
Λ2

τ2
+ 2Λmin (Λτ1 + Λτ2)

)

|A(c)
0,s + A(c)

0,t |2

+

(

−1

2
Λ2

τ3
− 1

2
Λ2

τ4
+ 2Λmin (Λτ3 + Λτ4)

)

|A(c)
0,u −A(c)

0,s|2
]

+C2

[

8Λmin (Λτ1 + Λτ2 + Λτ3 + Λτ4) − 24Λ2
min − 2

(

Λ2
τ1 + Λ2

τ2 + Λ2
τ3 + Λ2

τ4

)

−4Λmin

(

11

3
− 2

3

nlf

N

)

− 4

(

2

3
π2 − 67

9
+

10

9

nlf

N

)]

|Aab,(c)
0 |2

}

,

(3.134)

where τi is defined in Eq (3.36), σ, Λσ, and Λτi
are defined in Eq. (3.48) and right

before it, while Λmin is defined in Eq. (3.128).

IR Singular Gluon Emission: Complete Result for σ̂
gg

ir

Summing both soft and collinear contributions to the h → ggtt̄ + g cross section

and crossing the final state gluons gA, gB to the initial state and the Higgs boson to

the final state (which flips both helicities and momenta of these particles), yields ˆ̄σgg
ir

of Eq. (3.124) as

ˆ̄σgg
ir = (σ̂h→ggtt̄+g

soft + σ̂h→ggtt̄+g
coll )crossed . (3.135)
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The IR pole part of ˆ̄σgg
ir is given by

(ˆ̄σgg
ir )pole = ((σ̂h→ggtt̄+g

soft )pole + (σ̂h→ggtt̄+g
coll )pole)crossed

=

∫

d(PS3)
αs

2π
Nt

∑

(

C1M(1),gg
ir,ε + C2M(2),gg

ir,ε + C3M(3),gg
ir,ε

)

+
αs

2π
Nt

(

−2

3
nlf +

8

3
N − 1

N

)

1

ε
σ̂gg

LO
, (3.136)

where M(i),gg
ir,ε = −M(i),gg

V,ε (see Eq. (3.46)) and therefore (ˆ̄σgg
ir )pole completely cancels

the IR singularities of the virtual cross section (σ̂gg
virt)IR−pole in Eq. (3.49). The IR

finite part of ˆ̄σgg
ir is given by

(ˆ̄σgg
ir )finite = ((σ̂h→ggtt̄+g

soft )finite + (σ̂h→ggtt̄+g
coll )finite)crossed , (3.137)

with (σ̂h→ggtt̄+g
soft,coll )finite given in Eqs. (3.127) and (3.134).

Finally, as described in Section 3.4.2, the partonic cross section for the IR singular

real gluon radiation for the process gg → tt̄h + g using the one-cutoff PSS method,

σ̂gg
ir , is obtained from ˆ̄σgg

ir by adding σ̂gg
crossing (see Eq. (3.124)). The cross section

σ̂gg
crossing accounts for the difference between initial and final state collinear gluon

radiation and contributes to the hadronic cross section as

σgg
crossing = αs(µ)

∫

dx1dx2fg(x1)

∫ 1

x2

dz

z
fg(

x2

z
)Xg→g(z)σ̂gg

LO
+ (x1 ↔ x2) , (3.138)

with Xg→g given by [57]:

Xg→g(z) = −N

2π

(

4πµ2

smin

)ε
1

Γ(1 − ε)

(

1

ε

)

×
{[

11

6
− 1

3

nlf

N
− ε

(

π2

3
− 67

18
+

5

9

nlf

N

)]

δ(1 − z)

+2

[

z

[(1 − z)1+ε]+
+

(1 − z)1−ε

z
+ z(1 − z)1−ε

]}

, (3.139)

in terms of regularized plus functions (see Ref. [57] for the exact definition). As will

be demonstrated in Section 3.5, these remaining IR singularities will be absorbed

into the gluon PDFs when including the effects of mass factorization.
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3.4.2.3 The tree-level process (q, q̄)g → tt̄h + (q, q̄)

When calculating the cross section for qg → tt̄h + q in the collinear limit using

the procedure described above, the resulting IR singular cross section σ̂qg
ir is simply

given by the initial state qg splitting functions of Eq. (3.78) convoluted with the

corresponding Born cross sections (see, e.g. Ref. [57])

σ̂qg
ir =

[

αs

2π

1

Γ(1 − ε)

(

4πµ2

smin

)ε](

−1

ε

)
∫ 1

0

dz(1 − z)−ε ×

[Pqg(z) σ̂gg
LO

(g(q1′)g(q2) → tt̄h) + Pgq(z) σ̂qq̄
LO

(q(q1)q̄(q2′) → tt̄h)] ,(3.140)

where the prime identifies the parton that originates from the splitting of a similar

or different parent parton. The cross section for q̄g → tt̄h + q̄ in the collinear limit

is obtained in complete analogy with Eq. (3.140).

Finally, the hard part of the parton level cross section, σ̂ij
hard (ij = qq̄, gg, qg, q̄g),

is finite and can be calculated numerically. In this respect we note that, in the one

cutoff method, the soft and collinear limits of the real cross section, and consequently

σ̂ij
hard, are more sensitive to the smallness of the cutoff. A cut on the full invariant

masses sig is more drastic than two separate cuts on either the energy or the angle of

emission of the extra gluon (q or q̄), and can be felt even by terms in the amplitude

squared that do not contain singularities. These effects are very small, but large

enough to affect the results at the level of precision of our calculation. It is therefore

crucial, in particular for σ̂gg
hard, to model the Monte Carlo integration for each term

in Eqs. (3.119)-(3.120) separately, and to enforce term by term only the cuts on the

sig invariants that are actually present in each term.

3.5 NLO total cross section for tt̄h production

3.5.1 NLO total cross section at the Tevatron: pp̄ → tt̄h

As mentioned earlier, at the Tevatron CM energy, the partonic process qq̄ → tt̄h

dominates, making up more than 95% of the total cross section. Therefore, in this

section we only consider the contribution from the qq̄-initiated process.
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As described in Sec. 3.1, the observable total cross section at NLO is obtained by

convoluting the parton cross section for qq̄ → tt̄h with the NLO quark distribution

functions Fp,p̄
q (x, µ), thereby absorbing the remaining initial-state singularities of

δσ̂qq̄
NLO into the quark distribution functions. This can be understood as follows.

First the parton cross section is convoluted with the bare quark distribution functions

Fp,p̄
q (x) and subsequently Fp,p̄

q (x) is replaced by the renormalized quark distribution

functions Fp,p̄
q (x, µ) defined in some subtraction scheme. Using the MS scheme, the

scale-dependent NLO quark distribution functions are given in terms of F p,p̄
q (x) and

the QCD NLO parton distribution function counterterms [55, 57] as follows:

two-cutoff PSS method

Fp,p̄
q (x, µ) = Fp,p̄

q (x)

[

1 − αs

2π

Γ(1 − ε)

Γ(1 − 2ε)
(4π)ε

(

1

ε

)

CF

(

2 ln(δs) +
3

2

)]

(3.141)

+

[

αs

2π

Γ(1 − ε)

Γ(1 − 2ε)
(4π)ε

]
∫ 1−δs

x

dz

z

(

−1

ε

)

Pqq(z)Fp,p̄
j (

x

z
) ,

one-cutoff PSS method

Fp,p̄
q (x, µ) = Fp,p̄

q (x)

[

1 − αs

2π

(4π)ε

Γ(1 − ε)

(

1

ε

)

CF
3

2

]

(3.142)

+

[

αs

2π

(4π)ε

Γ(1 − ε)

]
∫ 1

x

dz

z

(

−1

ε

)

CF
1 + z2

(1 − z)+
Fp,p̄

j (
x

z
) ,

where the O(αs) terms in the previous equations are calculated from the O(αs)

corrections to the q → qg splitting, in the PSS formalism, and Pqq(z) is the Altarelli-

Parisi splitting function of Eq. (3.73). Note that, again, we choose the factorization

and renormalization scales to be equal. Therefore there is no explicit factorization

scale dependence in Eqs. (3.141) and (3.142), and the only µ-dependence in F p,p̄
q (x, µ)

comes from αs(µ). When using the two-cutoff method and convoluting the parton

cross section with the renormalized quark distribution function of Eq. (3.141), the

IR singular counterterm of Eq. (3.141) exactly cancels the remaining IR poles of

σ̂qq̄
virt + σ̂qq̄

soft and σ̂qq̄
hard/coll. In case of the one-cutoff PSS method, the IR singular
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counterterm of Eq. (3.142) exactly cancels the IR poles of σ̂qq̄
crossing. Finally, the

complete O(α3
s) inclusive total cross section for pp̄ → tt̄h in the MS factorization

scheme can be written as follows:

10
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Figure 3.15. Dependence of σNLO(pp → tth) on the arbitrary cutoff of the one-cutoff
PSS method, smin, at

√
sH = 2 TeV, for Mh = 120 GeV, and µ = mt. The upper

plot shows the cancellation of the smin dependence between σc
ir, σcrossing, and σhard.

The lower plot shows, on an enlarged scale, the dependence of σNLO on smin, with
the corresponding statistical errors.

two-cutoff PSS method

σqq̄
NLO

=
∑

qq̄

∫

dx1dx2Fp
q (x1, µ)F p̄

q̄ (x2, µ)
[

σ̂qq̄
LO

(x1, x2, µ) + σ̂qq̄
virt(x1, x2, µ) + σ̂′ qq̄

soft(x1, x2, µ)
]

+
αs

2π
CF

∑

qq̄

∫

dx1dx2

{
∫ 1−δs

x1

dz

z

[

Fp
q (

x1

z
, µ)F p̄

q̄ (x2, µ) + F p̄
q (x2, µ)Fp

q̄ (
x1

z
, µ)
]

(3.143)
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× σ̂qq̄
LO

(x1, x2, µ)

[

1 + z2

1 − z
ln

(

s

µ2

(1 − z)2

z

δc

2

)

+ 1 − z

]

+ (1 ↔ 2)

}

+
∑

qq̄

∫

dx1dx2Fp
q (x1, µ)F p̄

q̄ (x2, µ) σ̂hard/non−coll(x1, x2, µ) ,

with

σ̂′ qq̄
soft = σ̂qq̄

soft +
αs

2π

Γ(1 − ε)

Γ(1 − 2ε)
(4π)ε

(

1

ε

)

CF [4 ln(δs) + 3] , (3.144)

one-cutoff PSS method

σqq̄
NLO

=
∑

qq̄

∫

dx1dx2Fp
q (x1, µ)F p̄

q̄ (x2, µ)

{

σ̂qq̄
LO

(x1, x2, µ) + σ̂qq̄
virt(x1, x2, µ) (3.145)

+ˆ̄σqq̄
ir (x1, x2, µ) +

αs

2π
2 CF σ̂qq̄

LO
(x1, x2, µ)

[

3

2
ln

(

smin

µ2

)

+
π2

3
− 7

2

]}

+
αs

2π
CF

∑

qq̄

∫

dx1dx2

{
∫ 1

x1

dz

z

[

Fp
q (

x1

z
, µ)F p̄

q̄ (x2, µ) + F p̄
q (x2, µ)Fp

q̄ (
x1

z
, µ)
]

× σ̂qq̄
LO

(x1, x2, µ)

[

1 + z2

(1 − z)+
ln

(

s

µ2

smin

s

)

+ 1 − z + (1 + z2)

(

ln (1 − z)

1 − z

)

+

]

+(1 ↔ 2)

}

+
∑

qq̄

∫

dx1dx2Fp
q (x1, µ)F p̄

q̄ (x2, µ) σ̂qq̄
hard(x1, x2, µ) .

We note that σqq̄
NLO is finite, since, after mass factorization, both soft and collinear

singularities have been canceled between σ̂qq̄
virt + σ̂′ qq̄

soft and σ̂qq̄
hard/coll in the two-cutoff

PSS method, and between σ̂qq̄
virt and ˆ̄σqq̄

ir in the one-cutoff PSS method. The last terms

respectively describe the finite real gluon emission of Eq. (3.51) and Eq. (3.81). Note

that the second term in Eqs. (3.143) and (3.145), which is proportional to ln
(

s
µ2

)

,

corresponds exactly to the second and third terms of Eq. (3.5), as predicted by

renormalization group arguments. Before we discuss in detail the numerical results

for the NLO total cross section for pp̄ → tt̄h we first demonstrate that σqq̄
NLO does

not depend on the arbitrary cutoffs of the PSS method, i.e. on smin when we use

the one-cutoff method, and on the soft and hard/collinear cutoffs δs and δc when we

use the two-cutoff method. We note that the cancellation of the cutoff dependence

at the level of the total NLO cross section is a very delicate issue, since it involves
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Figure 3.16. Dependence of σNLO(pp → tth) on the soft cutoff δs of the two-cutoff
PSS method, at

√
sH = 2 TeV, for Mh = 120 GeV, µ = mt, and δc = 10−4. The

upper plot shows the cancellation of the δs-dependence between σsoft + σhard/coll and
σhard/non−coll. The lower plot shows, on an enlarged scale, the dependence of σNLO

on δs with the corresponding statistical errors.

both analytical and numerical contributions. It is crucial to study the behavior of

σNLO in a region where the cutoff(s) are small enough to justify the approximations

used in the analytical calculation of the IR-divergent part of σ̂qq̄
real, but not so small

to give origin to numerical instabilities.

Fig. 3.15 is about the one-cutoff PSS method and shows the dependence of σqq̄
NLO

on smin. In the upper window we illustrate the cancellation of the smin dependence

between σqq̄
ir , σqq̄

crossing, and σqq̄
hard, while in the lower window we show, on a larger

scale, the behavior of σNLO including the statistical errors from the Monte-Carlo

integration. We note that σqq̄
NLO also includes the Born cross section and the virtual

contribution to the NLO cross section, which are both smin-independent, and are
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therefore not shown explicitly in the upper part of Fig. 3.15. Clearly a plateau is

reached in the region 0.1 GeV2 < smin < 100 GeV2.
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Figure 3.17. Dependence of σNLO(pp → tth) on the collinear cutoff δc of the
two-cutoff PSS method, at

√
sH = 2 TeV, for Mh = 120 GeV, µ = mt, and

δs = 5 × 10−4. The upper plot shows the cancellation of the δc-dependence between
σsoft + σhard/coll and σhard/non−coll. The lower plot shows, on an enlarged scale, the
dependence of σNLO on δc with the corresponding statistical errors.

Figs. 3.16 and 3.17 summarize our results using the two-cutoff PSS method. In

Fig. 3.16, we show the dependence of σqq̄
NLO on the soft cutoff, δs, for a fixed value of

the hard/collinear cutoff, δc = 10−4. In Fig. 3.17, we show the dependence of σqq̄
NLO

on the hard/collinear cutoff, δc, for a fixed value of the soft cutoff, δs = 5 × 10−4.

In the upper window of Fig. 3.16 (3.17) we illustrate the cancellation of the δs (δc)

dependence between σqq̄
soft + σqq̄

hard/coll and σqq̄
hard/non−coll, while in the lower window

we show, on a larger scale, σqq̄
NLO with the statistical errors from the Monte-Carlo

integration. As before, σqq̄
NLO also includes the contribution from the Born and the
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virtual cross sections, which are both cutoff-independent and are not shown explicitly

in the upper parts of Figs. 3.16,3.17. For δs in the range 10−4 − 2.5 × 10−3 and δc

in the range 10−5 − 10−3, a clear plateau is reached and the NLO total cross section

is independent of the technical cutoffs of the two-cutoff PSS method. All the results

presented in the following are obtained using the two-cutoff PSS method with δs and

δc in the range 10−4−10−3. We have confirmed them using the one-cutoff PSS method

with 1≤smin≤10.

3.5.2 NLO total cross section at the LHC: pp → tt̄h

The total inclusive hadronic cross section for pp → tt̄h is the sum of the

contribution from the gg initial state, the qq̄ initial state and the (q, q̄)g initial states

σNLO(pp → tt̄h) = σgg
NLO

(pp → tt̄h) + σqq̄
NLO

(pp → tt̄h) + σqg
NLO

(pp → tt̄h) . (3.146)

As described in Section 3.1, σij
NLO(pp → tt̄h) is obtained by convoluting the

parton level NLO cross section σ̂ij
NLO(pp → tt̄h) with the NLO PDFs Fp

i (x, µ)

(i = q, g), thereby absorbing the remaining initial state singularities of δσ̂ij
NLO into the

renormalized PDFs. In the following we demonstrate in detail how this cancellation

works in the case of the gg and (q, q̄)g initiated processes. The case of the qq̄ is

identical to that presented in Section 3.5.1 and will not be repeated here.

First the parton level cross section is convoluted with the bare parton distribution

functions Fp
i (x) and subsequently the Fp

i (x) are replaced by the renormalized parton

distribution functions, Fp
i (x, µf), defined in some subtraction scheme at a given

factorization scale µf . Using the MS scheme, the scale-dependent NLO parton

distribution functions are given in terms of the bare F p
i (x) and the QCD NLO parton

distribution function counterterms [55, 57] as follows:

(a) For the case where an initial state gluon, quark or antiquark (b = g, (q, q̄)) split

respectively into a qq̄ or (q, q̄)g pair (b′ = (q, q̄), g):
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Fp
b′(x, µf) = Fp

b′(x) +

[

αs

2π

(

4πµ2
r

µ2
f

)ε
1

Γ(1 − ε)

]

∫ 1

x

dz

z

(

−1

ε

)

P 4
bb′(z)Fp

b

(x

z

)

,

(3.147)

for both the one-cutoff and two-cutoff PSS methods, where P 4
ij is defined in

Eq. (3.78).

(b) For the case of g → gg splitting:

two-cutoff PSS method

Fp
g (x, µf) = Fp

g (x)

[

1 − αs

2π

(

4πµ2
r

µ2
f

)ε
1

Γ(1 − ε)

(

1

ε

)

N

(

2 ln(δs) +
11

6
− 1

3

nlf

N

)

]

+

[

αs

2π

(

4πµ2
r

µ2
f

)ε
1

Γ(1 − ε)

]

∫ 1−δs

x

dz

z

(

−1

ε

)

Pgg(z)Fp
g

(x

z

)

,

(3.148)

where Pgg is Altarelli-Parisi splitting function given in Eq. (3.74).

one-cutoff PSS method

Fp
g (x, µ) = Fp

g (x)

[

1 − αs

2π

(

4πµ2
r

µ2
f

)ε
1

Γ(1 − ε)

(

1

ε

)

N

(

11

6
− 1

3

nlf

N

)

]

+

[

αs

2π

(

4πµ2
r

µ2
f

)ε
1

Γ(1 − ε)

]

∫ 1

x

dz

z

(

−1

ε

)

P (+)
gg (z)Fp

g

(x

z

)

,

(3.149)

where P
(+)
gg is the regulated Altarelli-Parisi splitting function given by:

P (+)
gg (z) = 2N

(

z

(1 − z)+

+
1 − z

z
+ z(1 − z)

)

. (3.150)

The O(αs) terms in the previous equations are calculated from the O(αs) corrections

to the b → b′j splittings, in the PSS formalism. Moreover, note that in Eqs. (3.147)-

(3.149) we have carefully separated the dependence on the factorization (µf) and
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renormalization scale (µr). It is understood that αs =αs(µr). The definition of the

subtracted PDFs is indeed the only place where both scales play a role, and the

only place where we have a dependence on µf . In the rest of this chapter we have

always set µr =µf =µ and we will also give the master formulas for the total NLO

cross section, Eqs. (3.151)-(3.156), using µr = µf = µ. We have checked that this

simplifying assumption has a negligible effect on our results and we will comment

more about this in Section 3.6.

In the two-cutoff PSS method, when convoluting the parton gg cross section

with the renormalized gluon distribution function of Eq. (3.148), the IR singular

counterterm of Eq. (3.148) exactly cancels the remaining IR poles of σ̂gg
virt + σ̂gg

soft and

σ̂gg
hard/coll. In the one-cutoff PSS method, the IR singular counterterm of Eq. (3.149)

exactly cancels the IR poles of σ̂gg
crossing. Finally, the complete O(α3

s) inclusive total

cross section for pp → tt̄h in the MS factorization scheme when only the gg initial

state is included, i.e. σgg
NLO(pp → tt̄h) of Eq. (3.146), can be written as follows:

two-cutoff PSS method

σgg
NLO

=
1

2

∫

dx1dx2

{

Fp
g (x1, µ)Fp

g (x2, µ) [σ̂gg
LO

(x1, x2, µ) + (σ̂gg
virt)finite(x1, x2, µ)

+ (σ̂gg
soft)finite(x1, x2, µ) + σ̂gg

s+v+ct(x1, x2, µ) + (1 ↔ 2)
]}

+
1

2

∫

dx1dx2

{
∫ 1−δs

x1

dz

z

[

Fp
g (

x1

z
, µ)Fp

g (x2, µ) + Fp
g (x2, µ)Fp

g (
x1

z
, µ)
]

× σ̂gg
LO

(x1, x2, µ)
αs

2π
ln

(

s

µ2

(1 − z)2

z

δc

2

)

Pgg(z) + (1 ↔ 2)

}

+
1

2

∫

dx1dx2

{

Fp
g (x1, µ)Fp

g (x2, µ) σ̂gg
hard/non−coll(x1, x2, µ) + (1 ↔ 2)

}

,

(3.151)

where σ̂gg
s+v+ct is obtained from the sum of (σ̂gg

virt)UV −pole of Eq. (3.42), σ̂gg
s+v of

Eq. (3.67), and the PDF counterterm in Eq. (3.148) as follows
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σ̂gg
s+v+ct =

αs

2π

[

4N ln(δs) ln

(

s

µ2

)

+

(

11

3
N − 2nlf

3
+ 4N ln(δs)

)

ln

(

m2
t

s

)]

σ̂gg
LO

.

(3.152)

one-cutoff PSS method

σgg
NLO

=
1

2

∫

dx1dx2

{

Fp
g (x1, µ)Fp

g (x2, µ) [σ̂gg
LO

(x1, x2, µ) + (σ̂gg
virt)finite(x1, x2, µ)

+ (ˆ̄σgg
ir )finite(x1, x2, µ) + σ̂gg

v+ir+ct(x1, x2, µ) + (1 ↔ 2)
]}

+
1

2

∫

dx1dx2

{
∫ 1

x1

dz

z

[

Fp
g (

x1

z
, µ)Fp

g (x2, µ) + Fp
g (x2, µ)Fp

g (
x1

z
, µ)
]

×σ̂gg
LO

(x1, x2, µ)
αs

2π
2N ln

(

s

µ2

smin

s

)(

z

(1 − z)+

+
1 − z

z
+ z(1 − z)

)

+(1 ↔ 2)

}

+
1

2

∫

dx1dx2

{
∫ 1

x1

dz

z

[

Fp
g (

x1

z
, µ)Fp

g (x2, µ) + Fp
g (x2, µ)Fp

g (
x1

z
, µ)
]

×σ̂gg
LO

(x1, x2, µ)
αs

2π
2N

[(

1 − z

z
+ z(1 − z)

)

ln(1 − z) + z

(

ln(1 − z)

1 − z

)

+

]

+(1 ↔ 2)

}

+
1

2

∫

dx1dx2

{

Fp
g (x1, µ)Fp

g (x2, µ) σ̂gg
hard(x1, x2, µ) + (1 ↔ 2)

}

,

(3.153)

where σ̂gg
v+ir+ct is obtained from the sum of (σ̂gg

virt)UV −pole of Eq. (3.42), (σ̂gg
virt)IR−pole

of Eq. (3.49), (ˆ̄σgg
ir )pole of Eq. (3.136), the part proportional to δ(1− z) of σ̂gg

crossing of

Eq. (3.138), and the PDF counterterm in Eq. (3.149), and can be written as:

σ̂gg
v+ir+ct =

αs

2π

[(

11

3
N − 2nlf

3

)

ln
(smin

s

)

+ 2N

(

π2

3
− 67

18
+

5nlf

9N

)]

σ̂gg
LO

. (3.154)

We note that σgg
NLO is finite, since, after mass factorization, both soft and collinear

singularities have been canceled between σ̂gg
virt + σ̂gg

soft and σ̂gg
hard/coll in the two-cutoff

PSS method, and between σ̂gg
virt and ˆ̄σgg

ir in the one-cutoff PSS method. The last terms
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respectively describe the finite real gluon emission of Eq. (3.51) and (3.81). Note

that when collecting all the terms in Eqs. (3.151) and (3.153) that are proportional

to ln(µ2/s), one obtains exactly the last two terms in Eq. (3.5), as predicted by

renormalization group arguments.

For the (q, q̄)g initiated processes we find:

two-cutoff PSS method

σqg
NLO

=
αs

2π

∑

i=q,q̄

∫

dx1dx2

{
∫ 1

x1

dz

z
Fp

i (
x1

z
, µ)Fp

g (x2, µ)×

σ̂gg
LO

(x1, x2, µ)

[

P 4
ig(z) ln

(

s

µ2

(1 − z)2

z

δc

2

)

− P ′
ig(z)

]

+

∫ 1

x1

dz

z
Fp

g (
x1

z
, µ)Fp

i (x2, µ)×

σ̂qq̄
LO

(x1, x2, µ)

[

P 4
gi(z) ln

(

s

µ2

(1 − z)2

z

δc

2

)

− P ′
gi(z)

]

+ (1 ↔ 2)

}

+
∑

i=q,q̄

∫

dx1dx2

{

Fp
i (x1, µ)Fp

g (x2, µ) σ̂qg
non−coll(x1, x2, µ) + (1 ↔ 2)

}

,

(3.155)

one-cutoff PSS method

σqg
NLO

=
αs

2π

∑

i=q,q̄

∫

dx1dx2

{
∫ 1

x1

dz

z
Fp

g (
x1

z
, µ)Fp

i (x2, µ)×

σ̂gg
LO

(x1, x2, µ)

[

P 4
ig(z) ln

(

smin(1 − z)

µ2

)

− P ′
ig(z)

]

+

∫ 1

x1

dz

z
Fp

i (
x1

z
, µ)Fp

g (x2, µ)×

σ̂qq̄
LO

(x1, x2, µ)

[

P 4
gi(z) ln

(

smin(1 − z)

µ2

)

− P ′
gi(z)

]

+ (1 ↔ 2)

}

+
∑

i=q,q̄

∫

dx1dx2

{

Fp
i (x1, µ)F p̄

g (x2, µ) σ̂qg
hard(x1, x2, µ) + (1 ↔ 2)

}

,

(3.156)
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where P 4
ij and P ′

ij are the O(1) and O(ε) contributions to the splitting functions

as given in Eq. (3.78). The last terms respectively describe the finite gluon/quark

emission of Eqs. (3.52) and (3.81).

We would like to conclude this section by showing explicitly that the total NLO

cross section, σNLO, does not depend on the arbitrary cutoffs introduced by the

PSS method, i.e. on smin for the one-cutoff method and on δs and δc for the

two-cutoff method. The cancellation of the PSS cutoff dependence is realized in σreal

by matching contributions that are calculated either analytically, in the IR-unsafe

region below the cutoff(s), or numerically, in the IR-safe region above the cutoff(s).

While the analytical calculation in the IR-unsafe region reproduces the form of

the cross section in the soft or collinear limits and is therefore only accurate for

small values of the cutoff(s), the numerical integration in the IR-safe region becomes

unstable for very small values of the cutoff(s). Therefore, obtaining a convincing

cutoff independence involves a delicate balance between the previous antagonistic

requirements and ultimately dictates the choice of neither too large nor too small

values for the cutoff(s). The Monte Carlo phase space integration has been performed

using the adaptive multi-dimensional integration program VEGAS [73] as well as

multichannel integration techniques [74, 75, 76].

In Figs. 3.18 and 3.19 we consider the two-cutoff PSS method and study the

independence of σNLO(pp → tt̄h) on δs and δc separately, by varying only one of the

two cutoffs while the other is kept fixed. In Fig. 3.18, δs is varied between 10−5

and 10−3 with δc =10−5, while in Fig. 3.19, δc is varied between 10−6 and 10−4 with

δs =10−4. In both plots, we show in the upper window the overall cutoff dependence

cancellation between σgg
soft + σgg

hard/coll and σgg
hard/non−coll in σgg

real. We do not include

the corresponding contributions from the Born and the virtual cross sections since

they are, of course, cutoff independent. Similar plots could be obtained for the other

two subchannels, qq̄ and qg + q̄g. We illustrate the point using just the gg channel,

since the qq̄ channel has already been presented in Section 3.5.1, while the cutoff
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Figure 3.18. Dependence of σNLO(pp → tt̄h) on the soft cutoff δs of the two-cutoff
PSS method, at

√
sH = 14 TeV, for Mh = 120 GeV, µ = mt + Mh/2, and δc = 10−5.

The upper plot shows the cancellation of the δs-dependence between σgg
soft +σgg

hard/coll

and σgg
hard/non−coll. The lower plot shows, on an enlarged scale, the dependence of the

full σNLO = σgg
NLO + σqq̄

NLO + σqg
NLO on δs with the corresponding statistical errors.

dependence of the qg + q̄g channel is trivial. In the lower window of the same plots

we complement this information by reproducing the full σNLO, including all channels,

on a larger scale that magnifies the details of the cutoff dependence cancellation.

The statistical errors from the Monte Carlo phase space integration are also shown.

Both Figs. 3.18 and 3.19 show a clear plateau over a wide range of δs and δc and

the NLO cross section is proven to be cutoff independent. The results presented in

Section 3.6 have been obtained by using the two-cutoff PSS method with δs =10−4

and δc =10−5.
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Figure 3.19. Dependence of σNLO(pp → tt̄h) on the collinear cutoff δc of the
two-cutoff PSS method, at

√
sH = 14 TeV, for Mh = 120 GeV, µ = mt + Mh/2,

and δs =10−4. The upper plot shows the cancellation of the δs-dependence between
σgg

soft + σgg
hard/coll, and σgg

hard/non−coll. The lower plot shows, on an enlarged scale, the

dependence of the full σNLO = σgg
NLO + σqq̄

NLO + σqg
NLO on δc with the corresponding

statistical errors.

We now turn to the one-cutoff PSS method and, following the same criterion

adopted for the case of the two-cutoff PSS method, we summarize in the upper

window of Fig. 3.20 the behavior of the different cutoff dependent contributions to

the real gg → tt̄h cross section, i.e. σgg
ir and σgg

hard, as well as the resulting cutoff

independence of σgg
real. The lower window of Fig. 3.20 shows the full σNLO, where

all tt̄h subprocesses are included, on an enlarged scale. The statistical deviations

due to the Monte Carlo integration are also shown, and therefore the stability of the

integration procedure can be appreciated. In Fig. 3.20 smin is varied over several

orders of magnitude and the presence of a clear plateau over most of the smin range
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Figure 3.20. Dependence of σNLO(pp → tt̄h) on the smin cutoff of the one-cutoff PSS
method, at

√
sH =14 TeV, for Mh =120 GeV, and µ=mt + Mh/2. The upper plot

shows the cancellation of the smin-dependence between σgg
ir and σgg

hard. The lower plot
shows, on an enlarged scale, the dependence of the full σNLO = σgg

NLO + σqq̄
NLO + σqg

NLO

on smin with the corresponding statistical errors.

is evident. The results presented in Section 3.6 have been cross-checked using the

one-cutoff PSS method with smin =10 GeV2.

3.6 Numerical results

3.6.1 Results for the Tevatron: pp̄ → tt̄h

In the following we discuss in detail the results for the NLO inclusive total cross

section for pp → tth, σNLO(pp → tth), as introduced in Sect. 3.1 and explicitly given

by Eqs. (3.143) and (3.145). These numerical results are found using CTEQ4M

parton distribution functions [77] and the 2-loop evolution of αs(µ) for the calculation
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of the NLO cross section, and CTEQ4L parton distribution functions and the 1-loop

evolution of αs(µ) for the calculation of the lowest order cross section, unless stated

otherwise.2 The top-quark mass is taken to be mt =174 GeV and αNLO

s (MZ)=0.116.

150 250 350 450
µ

3.5

4.5

5.5

6.5

σ LO
,N

LO
 (

fb
)

σLO

σNLO

√sH=2 TeV
Mh=120 GeV

Figure 3.21. Dependence of σLO,NLO(pp → tth) on the renormalization/factorization
scale µ, at

√
sH =2 TeV, for Mh =120 GeV.

First of all, in Fig. 3.21 we show how at NLO the dependence on the arbitrary

renormalization/factorization scale µ is significantly reduced. We use Mh =120 GeV

for illustration purposes. We note that only for scales µ of the order of 2mt + Mh or

bigger is the NLO result greater than the lowest order result at
√

sH = 2 TeV3.

Fig. 3.22 shows both the LO and the NLO total cross section for pp̄ → tt̄h as a

function of Mh, at
√

sH =2 TeV, for two values of the renormalization/factorization

2Since these PDF sets have been updated after the publication of this investigation, we have
checked that using current PDF sets (CTEQ6) does not have a significant effect on the results
presented here and hence we have not updated our plots.

3Original design CM energy for Run II at the Tevatron
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Figure 3.22. σNLO and σLO for pp → tth as functions of Mh, at
√

sH = 2 TeV, for
µ= mt and µ=2mt.

scale, µ = mt and µ = 2mt. Over the entire range of Mh accessible at the

Tevatron, the NLO corrections decrease the rate for renormalization/factorization

scales µ < 2mt +Mh. The reduction is much less dramatic at µ=2mt than at µ=mt,

as can be seen from both Fig. 3.21 and Fig. 3.22. An illustrative sample of results

is also given in Table 1. The error we quote on our values is the statistical error of

the numerical integration involved in evaluating the total cross section. We estimate

the remaining theoretical uncertainty on the NLO results to be of the order of 12%.

This is mainly due to: the left over µ-dependence (about 8%), the dependence on

the PDFs (about 6%), and the error on mt (about 7%) which particularly plays a

role in the Yukawa coupling.

The corresponding K-factor, i.e. the ratio of the NLO cross section to the LO

one,
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Figure 3.23. K-factor for pp → tth as a function of Mh, at
√

sH =2 TeV, for µ= mt

and µ=2mt .

K =
σNLO

σLO

, (3.157)

is shown in Fig. 3.23. For scales µ between µ=mt and µ=2mt, the K-factor varies

roughly between K = 0.70 and K = 0.95, when Mh varies in the range between 100

and 200 GeV. For scales of the order of µ=2mt +Mh the K-factor is of order one and

becomes larger than one for higher scales. Given the strong scale dependence of the

LO cross section, the K-factor also shows a significant µ-dependence and therefore

is an equally unreliable prediction. Moreover it is important to remember that the

K-factor depends on how the LO cross section is calculated. We choose to calculate

the LO cross section using both LO αs(µ) and LO PDFs, denoted by σLO in Table 1.

An equally valid approach could be to evaluate the LO cross section using NLO

αs(µ) and NLO PDFs, denoted by σ̄LO in Table 1, in which case the K-factor would

just represent the impact of the O(αs) corrections that do not originate from the
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Table 3.1. Values of both σLO (calculated with LO αs(µ) and LO PDFs), σ̄LO

(calculated with NLO αs(µ) and NLO PDFs), and σNLO for different values of Mh

and for different renormalization/factorization scales µ.

Mh (GeV) µ σLO (fb) σ̄LO (fb) σNLO (fb)

mt 6.8662 ± 0.0013 5.2843 ± 0.0008 4.863 ± 0.029
120 mt + Mh/2 5.9085 ± 0.0011 4.5846 ± 0.0007 4.847 ± 0.024

2mt 4.8789 ± 0.0009 3.8252 ± 0.0006 4.691 ± 0.020
2mt + Mh 4.2548 ± 0.0008 3.3600 ± 0.0005 4.511 ± 0.017

mt 3.4040 ± 0.0006 2.5811 ± 0.0005 2.355 ± 0.013
150 mt + Mh/2 2.8289 ± 0.0005 2.1668 ± 0.0004 2.315 ± 0.011

2mt 2.4007 ± 0.0004 1.8553 ± 0.0004 2.253 ± 0.010
2mt + Mh 2.0282 ± 0.0004 1.5813 ± 0.0003 2.147 ± 0.008

mt 1.7605 ± 0.0003 1.3153 ± 0.0002 1.160 ± 0.007
180 mt + Mh/2 1.4142 ± 0.0003 1.0693 ± 0.0002 1.158 ± 0.005

2mt 1.2326 ± 0.0002 0.9390 ± 0.0001 1.132 ± 0.004
2mt + Mh 1.0096 ± 0.0002 0.7773 ± 0.0001 1.069 ± 0.004

running of αs(µ) and the PDFs. Since σLO > σ̄LO, the K-factor obtained using σLO

is smaller than the one obtained using σ̄LO, and it is important to match the right

K-factor to the right σLO or σ̄LO. Therefore we would like to stress once more that

we only discuss the K-factor as a qualitative indication of the impact of O(αs) QCD

corrections, for different processes or when using different approaches. The physical

meaningful quantity is the NLO cross section, not the K-factor.

It is interesting to compare our NLO result for pp̄ → tth with the NLO result

for pp → tt. Since the Higgs boson is colorless, one would naively expect the QCD

corrections to both processes to be of roughly the same size. Defining the NLO cross

section using the NLO evolution of αs(µ) and the NLO CTEQ4M PDFs, and the

LO cross section using the LO evolution of αs(µ) and the LO CTEQ4L PDFs, the

K-factor for tt production at
√

sH =2 TeV, with µ=mt and mt =174 GeV, is:

K(pp → tt) |qq = 0.98 ,

K(pp → tt) |tot = 1.05 , (3.158)
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where the qq label indicates that only the qq initial state is included. The size of

the QCD corrections to pp → tt is thus similar in magnitude to the result obtained

in Fig. 3.23, taking into account that pp̄ → tt̄h is completely dominated by the

qq̄ channel. Of course, we do not expect a better agreement, since in pp̄ → tt̄h an

additional heavy particle is produced, and new contributions to the virtual corrections

arise. Moreover, taking the EHA as an indication, one could naively expect that the

radiation of a Higgs boson introduces an additional negative contribution. We also

observe that, if we now use as LO cross section the one obtained using NLO αs(µ)

and NLO CTEQ4M PDFs, the two K-factors in Eq. (3.158) increase, according to

the comment we made above, and become:

K(pp → tt) |qq = 1.18 ,

K(pp → tt) |tot = 1.24 , (3.159)

in agreement with the literature [78]4. Moreover, since the NLO cross section for

pp̄ → tt̄ is further increased by the resummation of the leading and next-to-leading

logarithms arising from the threshold region dynamics, the total K-factor for pp̄ → tt̄

can be as high as 1.33 for µ=mt. With this respect, we also note that, contrary to

pp̄ → tt̄, in the threshold region for pp̄ → tt̄h there are large negative contributions,

mainly from soft gluon radiation, which are largely compensated by large positive

contributions from hard gluon radiation at larger
√

s. In the threshold region the

Coulomb term, coming from the exchange of virtual gluons between the t/t̄ external

legs, is important and contributes to decrease the NLO cross section, although it is

moderated by the behavior of the three-body phase space. In the strict threshold

limit, the Coulomb contribution to pp̄ → tt̄h goes to zero, while for tt̄ production it

is constant and dominates the NLO cross section.

4We have compared our results with Fig. 9 of Ref. [78], and we see very good agreement with
the LO and the NLO curves, using mt =175 GeV and

√
sH =1.8 TeV.
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3.6.2 Results for the LHC: pp → tt̄h

In this section we summarize the most important numerical results for σNLO(pp →
tt̄h) and illustrate the impact of NLO QCD corrections on the tree level cross section.

In particular, we discuss the renormalization/factorization scale dependence of σNLO

with respect to σLO, and illustrate the dependence of both LO and NLO cross

sections on the Higgs boson mass. Results for σLO are obtained using the 1-loop

evolution of αs(µ) and CTEQ5L parton distribution functions [79], while results

for σNLO are obtained using the 2-loop evolution of αs(µ) and CTEQ5M parton

distribution functions, with αNLO

s (MZ) = 0.118 5. According to the renormalization

prescription adopted in this chapter and explained in Section 3.3.1.2, throughout our

calculation we use for the input parameter mt the top quark pole mass. Results are

presented for mt =174 GeV, while the uncertainty introduced by varying mt within

its experimental uncertainty is discussed later in this section. We define the top

quark Yukawa coupling to be gtt̄h = mt/v where v = (GF

√
2)−1/2 = 246 GeV is the

vacuum expectation value of the SM Higgs field, given in terms of the Fermi constant

GF .

In Fig. 3.24, we illustrate the dependence of both σNLO and σLO on the renor-

malization and factorization scales when the two scales are identical, i.e. when

µr =µf =µ. We have also studied the behavior of σNLO when the renormalization and

factorization scales are varied independently and noticed no appreciable difference

with respect to the case in which the two scales are identical. This justifies our

decision to present results only for µr = µf = µ. We also illustrate in Fig. 3.25 the

µ dependence of the NLO cross section for each parton level channel independently.

We use Mh =120 GeV for the purpose of these plots. As expected, Fig. 3.24 shows

that the NLO cross section has a much weaker scale dependence and represents a

much more stable theoretical prediction. In Fig. 3.26, we plot σLO(pp → tt̄h)

5Again, we have checked our results using the current PDF sets (CTEQ6) and we do not oberve
any significant effects.
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Figure 3.24. Dependence of σLO,NLO(pp → tt̄h) on the renormalization/factorization
scale µ, at

√
sH =14 TeV, for Mh =120 GeV.

and σNLO(pp → tt̄h) as functions of the Higgs boson mass, for
√

sH = 14 TeV and

two values of the common renormalization/factorization scale, µ = mt + Mh/2 and

µ=2mt +Mh. We consider 100 GeV≤Mh≤200 GeV since the production of a Higgs

boson in association with a pair of top quarks at the LHC will play a crucial role

only for relatively light Higgs bosons. The information gathered from this plot nicely

complements what has already been shown in Fig. 3.24. We summarize a sample

of results from both Figs. 3.24 and 3.26 in Table 3.2, where we also provide the

LO cross section, σLO, calculated using the 2-loop evolution of αs(µ) and CTEQ5M

PDFs. This can be useful to separately evaluate the impact of the full set of NLO

QCD corrections as opposed to the subset of them that mainly correspond to the

NLO running of αs(µ). The error we quote on our values is the statistical error of the

numerical integration involved in evaluating the total cross section. We estimate the
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Figure 3.25. Dependence of σNLO(gg, qq̄, qg + q̄g → tt̄h) on the renormaliza-
tion/factorization scale µ, at

√
sH =14 TeV, for Mh =120 GeV.

remaining theoretical uncertainty on the NLO results to be of the order of 15− 20%.

This is mainly due to: the left over µ-dependence (about 15%), the dependence on

the PDFs (about 6%), and the error on mt (about 7%) which particularly plays a

role in the top quark Yukawa coupling.

It can also be useful to quote the impact of NLO corrections in terms of the

K-factor defined in Eq. (3.157). We can see in Fig. 3.24 that, for a SM Higgs

boson of mass Mh = 120 GeV, the K-factor for pp → tt̄h is larger than unity when

µ ≥ 0.4µ0 for µ0 = mt + Mh/2. Therefore, over a broad range of the commonly

used renormalization/factorization scales, NLO QCD corrections increase the LO

cross section. Using the results of Table 3.2, the K-factors for a sample of Higgs

boson masses and renormalization/factorization scales can easily be calculated, both

using σLO and σLO. We notice, however, that the K-factor defined in Eq. (3.157) is
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Figure 3.26. σNLO(pp → tt̄h) and σLO(pp → tt̄h) as functions of Mh, at√
sH =14 TeV, for µ= mt + Mh/2 and µ=2mt + Mh.

affected by a very strong scale dependence, the same as σLO. Therefore, when the

K-factor is used to obtain σNLO from σLO, care must be used in matching σLO and K

corresponding to the same µ-scale.

3.7 Summary

The associated production of a Higgs boson with a pair of top quarks will play

a crucial role in the discovery of a light SM-like Higgs boson at current and future

experiments. Although it is probably at the edge of the machine capabilities of the

Tevatron, this channel could be important for discovery of a low mass Higgs boson

given enough luminosity. If this channel is not observed at the Tevatron, it will

definitely be instrumental in the discovery of a SM-like Higgs boson at the LHC.

With the statistics expected at the LHC, pp → tt̄h, with h → bb̄, τ+τ−, W+W−, γγ
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Table 3.2. Values of both σLO(pp → tt̄h), σLO(pp → tt̄h), and σNLO(pp → tt̄h),
at

√
sH = 14 TeV, for a sample of different values of Mh and of the renormaliza-

tion/factorization scales µ=µr =µf .

Mh (GeV) µ σLO (fb) σLO (fb) σNLO (fb)

mt 582.92 ± 0.06 616.81 ± 0.07 718.64 ± 3.71
120 mt + Mh/2 520.47 ± 0.06 553.25 ± 0.06 697.27 ± 3.20

2mt 450.09 ± 0.05 480.80 ± 0.05 662.66 ± 2.77
2mt + Mh 405.54 ± 0.04 434.59 ± 0.05 634.36 ± 2.34

mt 316.27 ± 0.03 336.41 ± 0.04 380.95 ± 1.81
150 mt + Mh/2 275.44 ± 0.03 294.35 ± 0.03 367.38 ± 1.52

2mt 243.47 ± 0.03 261.03 ± 0.03 352.71 ± 1.35
2mt + Mh 214.43 ± 0.02 230.60 ± 0.02 334.48 ± 1.18

mt 187.44 ± 0.02 200.46 ± 0.02 221.63 ± 1.01
180 mt + Mh/2 159.32 ± 0.02 171.15 ± 0.02 214.01 ± 0.85

2mt 143.77 ± 0.02 154.74 ± 0.02 206.59 ± 0.77
2mt + Mh 123.85 ± 0.01 133.65 ± 0.02 194.42 ± 0.70

will also play an important part in determining the couplings of the discovered Higgs

boson and, in particular, will give the only handle on a direct measurement of the

top quark Yukawa coupling.

In this chapter, we have reviewed the calculation of the NLO QCD corrections to

the inclusive cross section for tt̄h production at both the Tevatron and the LHC.

The corresponding NLO cross sections show drastically reduced renormalization

and factorization scale dependence, and lead to increased confidence in predictions

based on these results. At the Tevatron, the overall uncertainty on the theoretical

prediction, including the errors coming from parton distribution functions and the

top quark mass, is reduced to only 10%, while at the LHC the remaining uncertainty

is reduced to 15-20%. This is a drastic reduction compared to the 100% uncertainty

oberved in the LO predictions (see Section 3.2.3).

At the Tevatron, the NLO QCD corrections slightly decrease or increase the Born

level cross section depending on the renormalization/factorization scales used. The
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NLO inclusive total cross section for Higgs boson masses in the range accessible at

the Tevatron, 120<Mh <180 GeV, is of the order of 1 − 5 fb.

At the LHC, including NLO QCD corrections increases the LO cross sections for

a broad range of commonly used renormalization and factorization scales, and over

the entire Higgs boson mass range considered in this chapter. This is summarized

by saying that the K-factor for renormalization and factorization scales in the range

mt <µ≤ 2mt + Mh and Higgs boson masses in the range 100 GeV≤ Mh ≤ 200 GeV

is between 1.2 and 1.6. For this mass range, the NLO inclusive total cross section at

the LHC is in the range 200 − 700 fb.

The calculation of the NLO QCD cross section for pp̄, pp → tt̄h contains several

technical difficulties that have been thoroughly explained in this chapter. The

NLO virtual corrections involve pentagon diagrams and consequently require the

evaluation of both scalar and tensor pentagon integrals with several external and

internal massive particles. Detailed information about the method used as well as

explicit results for all the IR singular integrals appearing in the calculation are

presented in a series of Appendices. Tensor pentagon integrals are affected by

numerical instabilities and we discuss in this chapter how we have calculated them

in a numerically stable form. The NLO real corrections are complicated by the

presence of IR divergences. We have calculated them in two different variations of

the phase space slicing method, involving one or two arbitrary cutoffs respectively.

The correspondence between the two Phase Space Slicing methods is made explicit,

and the agreement between them constitutes a powerful check of the technicalities

used in their implementations. The techniques developed in this chapter can now be

applied to similar higher order calculations, in particular to the case of the associated

bb̄h production at both the Tevatron and the LHC which we consider in the next

chapter.
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CHAPTER 4

ASSOCIATED HIGGS BOSON PRODUCTION

WITH BOTTOM QUARKS

As we saw in Chapter 1, the Higgs boson of the SM preferentially couples to the

heaviest particles in the spectrum. Hence, the production of a SM Higgs boson with

bottom quarks is expected to be suppressed in comparison to other Higgs production

modes due to the smallness of the bottom quark Yukawa coupling, gbb̄h = mb/v where

mb ≈ 4.5 GeV and v = (
√

2GF )−1/2 = 246 GeV. However, in a two Higgs doublet

model , such as the MSSM, the couplings of some Higgs bosons to bottom quarks

grows with the ratio of the neutral Higgs boson vacuum expectation values, tanβ,

and can be significantly enhanced over the SM coupling, leading to an observable

production rate for a Higgs boson in association with bottom quarks in most regions

of the parameter space. Given the relatively light final state, bb̄h production is well

within the kinematic reach of the Tevatron and could therefore provide the first signal

of new physics from Run II.

g

g

b

b̄

h  

q

q̄

b

b̄

h

Figure 4.1. Sample Feynman diagrams for gg → bb̄h and qq̄ → bb̄h production at
tree level.
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For this reason, the production of Higgs bosons in association with bottom quarks

has recently received much interest from both the theoretical and experimental

communities [35, 80]. At tree level, the cross section is almost entirely dominated by

the sub-process gg → bb̄h (where h = hSM , h0, H0, A0) with only a small contribution

from qq̄ → bb̄h, at both the Tevatron and LHC (see Fig. 4.1). Naively, the calculation

of bb̄h production at NLO would follow that of tt̄h, outlined in the last chapter,

with the universal replacement of the top quark mass with the bottom quark mass,

mt ↔ mb. However, the theoretical prediction of bb̄h production at hadron colliders

involves several subtle issues not encountered in the calculation of tt̄h production.

Both from an experimental and theoretical standpoint, it is important to dis-

tinguish between inclusive and exclusive bb̄h production. More specifically, the

production of a Higgs boson with a pair of b quarks can be detected via: (i) a

fully exclusive measurement, where both b jets are observed, (ii) a fully inclusive

measurement, where no b jet is observed, or (iii) a semi-inclusive measurement,

where at least one b jet is observed.

Experimentally, b quarks are identified or tagged by imposing selection cuts on

their transverse momentum and their angular direction with respect to the beam

axis. Inclusive modes have larger cross sections, but also larger background, such that

more exclusive modes are preferred experimentally. Moreover, only the exclusive and

semi-inclusive modes are unambiguously proportional to the bottom quark Yukawa

coupling.

Theoretically, different calculational approaches may be adopted depending on

the fact that a final state b quark is either treated inclusively (untagged) or exclusively

(tagged). Indeed, when a final state b quark is not identified, the corresponding

integration over its phase space gives rise to logarithms of the form:

Λb = log

(

µ2
h

m2
b

)

, (4.1)
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where mb and µh represent the lower and upper bounds on the integration over

the transverse momentum of the final state b quark. µh is typically of O(Mh)

and therefore, due to the smallness of the bottom quark mass, these logarithms

can be quite large1. Additionally, the same logarithms appear at every order in

the perturbative expansion of the cross section in the strong coupling, αs, due to

recursive gluon emission from internal bottom quark lines. If the logarithms are

large, the convergence of the perturbative expansion of the cross section could be

severely hindered and it can be advisable to reorganize the expansion in powers of

αn
s Λm

b , further resumming various orders of logarithms via renormalization group

techniques.

Currently, there are two approaches to calculating the inclusive and semi-

inclusive cross sections for Higgs production with bottom quarks. Working under

certain kinematic approximations, and adopting the so-called five-flavor-number

scheme (5FNS), the collinear logarithms, Λb, can be factored out and resummed

by introducing a bottom quark Parton Distribution Function (PDF) [81, 82, 83].

This approach restructures the calculation to be an expansion in both αs and

Λ−1
b . The LO process for the semi-inclusive mode then becomes gb → bh shown

in Fig. 4.2, while the LO process for the fully-inclusive mode becomes bb̄ → h

shown in Fig. 4.3. Alternatively, working with no kinematic approximations, and

adopting the so-called four-flavor-number scheme (4FNS), one can compute the cross

section for pp̄, pp → bb̄h at fixed order in QCD with no special treatment of the

collinear logarithms, considering just the parton level processes qq̄, gg → bb̄h and

their radiative corrections.

The fully exclusive bb̄h production cross section can only be computed in the

4FNS framework. As far as the inclusive and semi-inclusive production cross sections

go, the comparison between the the 4FNS and 5FNS needs to consider higher-order

1The logarithms mentioned here also appear in the tt̄h calculation but, since µh is typically of
the order of mt, the logarithms are small and the convergence of the perturbative expansion is
preserved.
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Figure 4.2. Tree level Feynman diagram for gb → bh in the 5FNS.
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Figure 4.3. Tree level Feynman diagram for bb̄ → h in the 5FNS.

QCD corrections, in order to work with stable results. For quite some time, the

comparison between these two approaches has been hindered by the lack of a NLO

QCD calculation for qq̄, gg → bb̄h. Thanks to our work, this gap has been filled and

QCD corrected cross sections for all three final states have now been computed in both

the 4FNS and 5FNS. For the inclusive case, the NLO QCD corrected 4FNS [80, 84]

and the NNLO QCD corrected 5FNS cross sections [85] have been compared and are

found to be in good agreement within theoretical uncertainties. The NLO predictions

of the semi-inclusive cross sections for the 4FNS [84, 86] and 5FNS [87] have also

been extensively compared and the agreement between the two is spectacular. The

compatibility of these two seemingly different calculational schemes in the prediction

of Higgs boson production rates is indeed a beautiful check of the theory. Finally,

two independent calculations of the NLO QCD corrections for the exclusive mode

have been compared and agreement has been found [84, 88].

It should be noted that the above discussion for the production of a scalar Higgs

boson with bottom quarks applies equally well to the production of a pseudoscalar
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Higgs boson. In fact, if one neglects the bottom quark mass in the calculation of the

NLO corrections, the predictions for bb̄A0 is identical to those for bb̄h0(H0) given a

rescaling of the Yukawa couplings (see Section 1.2.2). On the other hand, for massive

b quarks, the situation becomes more complicated due to the γ5 matrix appearing in

the bb̄A0 Yukawa coupling. The γ5 Dirac matrix is intrinsically a four-dimensional

object and care must be taken in its treatment when regularizing the calculation in

dimensional regularization (d 6= 4). However, bottom quark mass effects are expected

to be small, O(
m2

b

M2
h

), and predictions for bb̄h0, upon rescaling of the Yukawa coupling,

are good indicators for bb̄A0 production even in the massive b quark case.

The remainder of this chapter is organized as follows. In Section 4.1, we discuss in

detail the framework of the calculations in the 4FNS and 5FNS. Given the importance

it plays in the prediction of the cross section through the Yukawa coupling, we also

discuss the renormalization of the bottom quark mass. In Section 4.2, we present our

results for the inclusive, semi-inclusive and exclusive bb̄h production. In Section 4.3,

we investigate the uncertainties arising from the PDFs. These uncertainties, which

can be quite significant for hadronic processes, are calculated using the algorithm

developed by the CTEQ collaboration [89]. Finally, we summarize our results in

Section 4.4.

4.1 Theoretical framework

4.1.1 Four Flavor Number Scheme

In the 4FNS, the NLO QCD corrections to the hadronic processes pp̄(pp) → bb̄h

consist of the O(αs) virtual and real corrections to the tree-level processes gg, qq̄ →
bb̄h. In fact, with the interchange of the top and bottom quark masses, the NLO

calculation of bb̄h production is identical to that of tt̄h production presented in

Chapter 3.
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Figure 4.4. Sample of diagrams corresponding to O(αs) virtual corrections where
the Higgs boson couples to an internal fermion loop and not to the external bb̄ pair.
The circled cross denotes all possible insertion of the final state Higgs boson leg, each
insertion corresponding to a different diagram.

We always first obtain results in the SM and subsequently rescale the Yukawa

coupling(s) to produce the corresponding MSSM results. This rescaling must be

performed with some care, though, due to virtual diagrams where the Higgs boson

is radiated from a closed loop of top quarks as shown in Fig. 4.4. Indeed, the MSSM

cross sections are obtained as follows:

σMSSM =

(

gMSSM
bbh

gSM
bbh

)2(

σSM − σt
SM

)

+

(

gMSSM
tth gMSSM

bbh

gSM
tth gSM

bbh

)

σt
SM . (4.2)

where σSM is the full NLO QCD corrected cross section (including contributions

from top-loop diagrams) and σt
SM is the contribution from top-loop diagrams alone,

such that the difference (σSM − σt
SM) is the NLO QCD corrected cross section

without top-loop contributions. For the following discussion, we also use the

SUSY-corrected Yukawa couplings presented in Section 1.2.2. Numerical values for

these corrected couplings have been obtained using input parameters (α, MA, etc.)

from FeynHiggs [1] where higher-order SM and MSSM corrections to masses and

couplings have been included.

Finally, to ensure that the b quarks are in a range where experiments can tag

the resulting b-quark jet, cuts are placed on the minimum transverse momentum
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(pb,min
T ) and the maximum pseudorapidity (ηmax

b ) of the final state b quark(s), where

the pseudorapidity is defined as

ηb = ln tan(θb/2) (4.3)

and θb is the angle of the bottom quark from the beam direction.

4.1.2 Five Flavor Number Scheme

The inclusive and semi-inclusive cross sections have also been computed in the

5FNS, at NNLO [85] and NLO [87] in QCD, respectively.

As mentioned earlier, the idea of using a 5FNS with a bottom quark initial state

density is motivated by the possibility of factoring out and, subsequently, resumming

large collinear logarithms arising in the perturbative expansion of the cross section

when one or both bottom b quarks are treated inclusively.

To clarify this point further, it is instructive to explicitly derive how the form of

the bottom quark PDF comes about. In Appendix E, we provide a simple calculation

which illustrates the origin of the large logarithms in the case when only one bottom

quark is at large pT . From this calculation, we learn two things. First, the logarithms

originating from the integration over the final-state b quark transverse momentum

can be factored out into a b quark density function or parton distribution function

given at lowest order in αs by:

b(x, µ) =
αs(µ)

2π
Λb

∫ 1

x

dy

y
Pqg

(

x

y

)

g(y, µ) , (4.4)

where g(y, µ) is the gluon PDF and Pqg is the Altarelli-Parisi splitting function for

g → qq̄ and is given by

Pqg =
1

2
[z2 + (1 − z)2]. (4.5)

The tree-level process then becomes gb → bh when only one b quark is treated

inclusively (or bb → h when both b quarks are treated inclusively). Second, we see

125



that the 5FNS is based on the approximation that a spectator bottom quark (i.e.,

a b quark which is not tagged in the final state) is at small transverse momentum

(the calculation in Appendix E is performed with small pT ). At lowest order, these

spectator quarks are produced with zero pT , and a transverse momentum spectrum

for the outgoing bottom quarks is generated at higher orders [81, 82]. Finally, the

resummation of the leading Λb collinear logarithms is obtained via renormalization

group arguments, in the form of the DGLAP equation [59, 90, 91] which (at LO) is

given by:
d

d log µ
b(x, µ) =

αs(µ)

π

∫ 1

x

dz

z
Pqg(z) g

(

x

z
, µ

)

, (4.6)

therefore providing a potentially more stable perturbative expansion of the cross

section.

With the use of a b-quark PDF, the 5FNS effectively reorders the perturbative

expansion to be one in αs and Λ−1
b . To see how this works, let us consider the

perturbative expansion of the inclusive process bb̄ → h (Fig. 4.3) which, according

to what we just saw, is intrinsically of order α2
sΛ

2
b . At NLO, the virtual and real

corrections to the tree level process make contributions of O(α3
sΛ

2
b). However, at

NLO, we must also consider the contribution from gb → bh where the final state b is

at high pT . This process makes a contribution of order α2
sΛb and is, thus, a correction

of O(Λ−1
b ) to the tree level cross section. Similarly, at NNLO, besides the myriad

of radiative corrections of O(α4
sΛ

2
b), we must also include the contribution from the

process gg → bb̄h, where both b and b̄ are at high pT . The contribution from these

diagrams are of order α2
s, and are, thus, O(Λ−2

b ) (or NNLO) corrections to the tree

level process bb̄ → h [83, 92].

The above discussion for bb̄ → h also applies to the perturbative expansion of

gb → bh. In this case, the tree level process is of order α2
sΛb and the contribution

from gg → bb̄h is a NLO correction of O(Λ−1
b ) [87]. Moreover, the semi-inclusive
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cross section is computed by requiring that at least one of the final state b quarks

pass pT,b and ηb cuts, as in Section 4.1.1.

In contrast to the 4FNS calculation where the bottom quark masses are kept

finite, all of the existing 5FNS calculations have been performed with the b mass

set to zero, except in the overall Yukawa coupling. Finally, to obtain results for the

MSSM Higgs boson from the NLO calculation of gb → bh [87], we follow the same

rescaling procedure outlined in Section 4.1.1. The NNLO calculation for the inclusive

process bb̄ → h does not contain any top-loop diagrams and results can be obtained

from the SM results by simply replacing gSM
bb̄h

with gMSSM
bb̄h

.

4.1.3 Definition of b quark mass

One potential source of theoretical uncertainty in the calculation of pp̄(pp) → bb̄h

involves the renormalization of the b quark mass. Given the large sensitivity of the

bottom quark mass to the renormalization scale and given the prominent role it

plays in the bb̄h production cross section through the overall bottom quark Yukawa

coupling, we have chosen to use two schemes for both the renormalization of the

bottom quark mass and the renormalization constant of the external bottom quark

field to investigate this renormalization scheme dependence: the MS scheme and an

on-shell (OS) scheme [88].

When using the OS subtraction scheme, we fix the wave function renormalization

constant of the external bottom quark field, (δZ
(b)
2 )OS, and the mass renormalization

constant, (δmb)OS, by requiring that

Σ̂b(/p = mb) = 0 ; lim
/p→mb

Σ̂b(/p)

/p − mb
= 0 , (4.7)

where

Σ̂b = (/p − mb)
(

ΣV + δZ
(b)
2

)

+ mb

(

ΣS + ΣV − δmb

mb

)

(4.8)

denotes the renormalized bottom quark self-energy at 1-loop in QCD, expressed in

terms of the vector, ΣV , and scalar, ΣS, parts of the unrenormalized self-energy,
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and of the mass and wave function renormalization constants. Using Eq. (4.7) in

d=4 − 2ε dimensions one finds

(

δZ
(b)
2

)

OS
= −αs

4π
CF

(

4πµ2

m2
b

)ε

Γ(1 + ε)

(

1

εUV

+ 4 +
2

εIR

)

, (4.9)

(

δmb

mb

)

OS

= −αs

4π
CF

(

4πµ2

m2
b

)ε

Γ(1 + ε)

(

3

εUV

+ 4

)

, (4.10)

where we have explicitly distinguished between ultraviolet and infrared divergences.

The infrared divergences are canceled between virtual and real soft and collinear

contributions according to the pattern outlined in the last chapter, to which we refer

for more details.

In the MS scheme, the bottom quark renormalization constants are fixed by

requiring that they cancel the UV divergent parts of the bottom quark self energy

Σ̂b of Eq. (4.8), i.e.

(

δZ
(b)
2

)

MS
= −αs

4π
CF (4π)ε Γ(1 + ε)

1

εUV

, (4.11)
(

δmb

mb

)

MS

= −αs

4π
CF (4π)ε Γ(1 + ε)

3

εUV

. (4.12)

According to the LSZ prescription [93], one also needs to consider the insertion of

the renormalized one-loop self-energy corrections on the external bottom quark legs.

While these terms are zero in the OS scheme (see Eq. (4.7)), they are not zero

in the MS scheme. Together with (δZ
(b)
2 )MS , their contribution to the NLO cross

section equals the contribution of the wave function counterterm in the OS scheme,

(δZ
(b)
2 )OS, as expected from the LSZ prescription itself. The cross section does not

depend on the renormalization of the external particle wave functions.

We therefore focus on the scheme dependence induced by the choice of different

subtraction schemes for the bottom quark mass. We note that the bottom quark

mass counterterm has to be used twice: once to renormalize the bottom quark mass

appearing in internal propagators and once to renormalize the bottom quark Yukawa
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coupling. Indeed, if one considers only QCD corrections, the counterterm for the

bottom quark Yukawa coupling,

δgbb̄h =
δmb

v
, (4.13)

coincides with the counterterm for the bottom quark mass, since the SM Higgs

vacuum expectation value v is not renormalized at 1-loop in QCD. This stays true

when we generalize the gbb̄h coupling from the SM to the case of the scalar Higgs

bosons of the MSSM.

At 1-loop order in QCD, the relation between the pole mass, mb, and the MS

mass, mb(µ), is indeed determined by the difference between the OS and MS bottom

mass counterterms, αs
4πδCT , since

mb(µ) = mb

{

1 − αs(µ)

4π
CF

[

3 ln

(

µ2

m2
b

)

+ 4

]}

≡ mb

[

1 − αs(µ)

4π
δCT (µ)

]

. (4.14)

Adopting the OS or MS prescription consists of using either Eq. (4.10) or Eq. (4.12)

for the bottom mass counterterms while substituting mb or mb(µ) respectively in both

the bottom quark propagator and Yukawa coupling. At O(α3
s) the two prescriptions

give identical results. Indeed, replacing mb by mb(µ) in the Yukawa coupling adds a

term

−αs(µ)

2π
δCT (µ)σ̂LO + O(α4

s) (4.15)

to the NLO parton level cross section, which compensates exactly for the difference

in the OS and MS counterterms. On the other hand, using the MS mass in the

bottom quark propagator,

i

/p − mb(µ)
=

i

/p − mb

[

1 + imb
αs

4π
δCT (µ)

i

/p − mb

]

+ O(α2
s) , (4.16)

of the LO cross section leads to an extra contribution to the MS NLO cross section

which, together with the MS mass counterterm insertions into the internal bottom

quark propagators (see diagrams Sqq̄
1 in Fig. 3.5 and Sgg

2 , Sgg
3 , and Sgg

4 in Fig. 3.9 of
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Chapter 3), coincides with the corresponding mass counterterm insertions in the OS

scheme at O(α3
s).

Therefore, using OS or MS at O(α3
s) is perturbatively consistent, the difference

between the two schemes being of higher order and hence, strictly speaking, part

of the theoretical uncertainty of the NLO calculation. One notices however that

some of the large logarithms involved in the renormalization procedure of the NLO

cross section come from the renormalization of the bottom quark mass, and are nicely

factored out by using the MS bottom mass in the bottom quark Yukawa coupling (see

Eq. (4.14)). Therefore one should consider reorganizing the perturbative expansion

in terms of leading logarithms (of the form αn
s (µ) lnn(µ2/m2

b)) or next-to-leading-

logarithms (of the form αn
s (µ) lnn−1(µ2/m2

b), for µ' Mh), as obtained by replacing

the MS bottom mass in the Yukawa coupling by the corresponding 1-loop or 2-loop

renormalization group improved MS masses:

mb(µ)1l = mb

[

αs(µ)

αs(mb)

]c0/b0

, (4.17)

mb(µ)2l = mb

[

αs(µ)

αs(mb)

]c0/b0 [

1 +
c0

b0
(c1 − b1)

αs(µ) − αs(mb)

π

](

1 − 4

3

αs(mb)

π

)

,

(4.18)

where

b0 =
1

4π

(

11

3
N − 2

3
nlf

)

, c0 =
1

π
, (4.19)

b1 =
1

2π

51N − 19nlf

11N − 2nlf
, c1 =

1

72π
(101N − 10nlf) , (4.20)

are the one and two loop coefficients of the QCD β-function and mass anomalous

dimension γm, while N =3 is the number of colors and nlf =5 is the number of light

flavors.

In both Higgs boson decays to heavy quarks and Higgs boson production with

heavy quarks in e+e− collisions, using Eq. (4.17) at LO and Eq. (4.18) at NLO in

the Yukawa coupling proves to be a very powerful way to stabilize the perturbative
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calculation of the cross section [94]. The difference between LO and NLO rates is

reduced and the dependence on the renormalization and factorization scales at NLO

is very mild, indicating a very small residual theoretical error or equivalently a very

good convergence of the perturbative expansion of the corresponding rate. This is

due to the fact that in these cases to a large extent the O(αs) QCD corrections

amount to a renormalization of the heavy quark mass in the Yukawa coupling. In

more complicated cases, like the case of the hadronic cross section discussed in this

paper, the previous argument is not automatically true.

Using the OS or MS bottom quark mass mainly affects the Yukawa coupling.

Therefore, in the hadronic case, we will look at the different behavior of the NLO cross

section when the bottom quark Yukawa coupling is renormalized either in the OS

or in the MS scheme, keeping the bottom quark pole mass everywhere else. For the

purpose of illustration, let us consider the fully exclusive case. Fig. 4.5 of Section 4.2

shows the renormalization and factorization scale dependence of the LO and NLO

cross sections for pp̄(pp) → bb̄h obtained using in the Yukawa coupling either the pole

mass mb or the MS running mass mb(µ) in Eq. (4.17) (at LO) and (4.18) (at NLO).

The use of mb(µ) both at LO and NLO seems to improve the perturbative calculation

of the cross section, since the NLO MS cross section is better behaved than the NLO

OS cross section at low scales and since the difference between LO and NLO cross

section is smaller when the bottom quark Yukawa coupling is renormalized in the

MS scheme than in the OS scheme. For this reason, most of the numerical results in

Section 4.2 are presented using the MS bottom quark mass in the Yukawa coupling.

However, both the OS and the MS cross sections have very well defined regions of

minimum sensitivity to the variation of the renormalization/factorization scale and

these regions do not quite overlap. The difference between the OS and MS results

at the plateau should rather be interpreted, in the absence of a NNLO calculation,

as an upper bound on the theoretical uncertainty.
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The origin of the large difference between the OS and MS NLO cross sections

illustrated in Fig. 4.5 can be understood by studying the numerical effect of the

higher order terms that are included in the NLO MS cross section when mb(µ) is

used in the Yukawa coupling. The parton level NLO cross sections for ij → bb̄h

(ij =qq̄, gg) in the OS and MS prescription explained above can be written as:

σ̂ij
NLO,OS

(x1, x2, µ) = m2
bα

2
s(µ)

{

gij
LO

(x1, x2)

+
αs(µ)

4π

[

gij
NLO

(x1, x2, µ) − 2gij
LO

(x1, x2)δCT (µ) +
mt

mb
gij

cl
(x1, x2)

]}

,

(4.21)

σ̂ij
NLO,MS

(x1, x2, µ) = m2
b(µ)α2

s(µ)

{

gij
LO

(x1, x2)

+
αs(µ)

4π

[

gij
NLO

(x1, x2, µ) +
mt

mb(µ)
gij

cl
(x1, x2)

]}

, (4.22)

where the dependence on the renormalization scale is explicitly given. αs(µ) is the

2-loop strong coupling, mb is the bottom pole mass, and mb(µ) is the bottom quark

MS mass. gij
LO, gij

NLO and gij
cl have been defined in such a way that they are the same

in the OS and the MS schemes. They correspond respectively to the O(α2
s) (gij

LO)

and O(α3
s) (gij

NLO) contributions to the NLO QCD cross section, from which we have

singled out the O(αs) virtual corrections where the Higgs boson couples to a top

quark in a closed fermion loop (gij
cl , see, e.g., diagrams in Fig. 4.4) as well as δCT (µ),

i.e. the difference between the OS and MS bottom mass counterterms defined in

Eq. (4.14). Using Eqs. (4.21) and (4.22), one can easily verify that the difference

between the parton level NLO cross sections obtained by using either the OS or the

MS scheme for the bottom quark Yukawa coupling is, as expected, of higher order

in αs, i.e.:

∆̂ = σ̂ij
NLO,OS

− σ̂ij
NLO,MS

= α2
s(µ)gij

LO
(x1, x2)

[

m2
b − m2

b(µ) − m2
b

αs(µ)

2π
δCT (µ)

]

+
α3

s(µ)

4π
(m2

b − m2
b(µ))

[

gij
NLO

(x1, x2, µ) +
mt

mb + mb(µ)
gij

cl
(x1, x2)

]

. (4.23)
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The term in the first bracket of Eq. (4.23) vanishes at O(α3
s), as can be easily verified

by using Eq. (4.14). Hence all the terms in Eq. (4.23) only contribute at O(α4
s) and

higher. However, while the first term is in general quite small, the term proportional

to gij
NLO(x1, x2, µ) can be large and has a non trivial scale dependence that we can

formally write as:

gij
NLO

(x1, x2, µ) = gij
1 (x1, x2) + g̃ij

1 (x1, x2) ln

(

µ2

s

)

. (4.24)

From renormalization group arguments one can see that g̃ij
1 (x1, x2) is given by:

g̃ij
1 (x1, x2) = 2

{

(4πb0 + 4)gij
LO

(x1, x2) −
∑

k

[
∫ 1

ρ

dz1Pik(z1)g
kj
LO

(x1z1, x2)

+

∫ 1

ρ

dz2Pjk(z2)g
ik
LO

(x1, x2z2)

]}

, (4.25)

where ρ = (2mb + Mh)
2/s, Pij(z) denotes the lowest-order regulated Altarelli-Parisi

splitting function [59] of parton i into parton j, when j carries a fraction z of the

momentum of parton i, (see e.g. Section 3.4) and b0 is given in Eq. (4.19). As a

result, ∆̂, defined in Eq. (4.23), turns out to have a non trivial scale dependence and,

thus, the difference between the NLO hadronic cross section calculated with the OS

or with the MS definition of the bottom quark Yukawa coupling can be numerically

quite significant for some values of the renormalization/factorization scale, as we will

illustrate in Section 4.2 (see Figs. 4.5 and 4.6).

4.2 Numerical results

4.2.1 Higgs production with two high-pT b jets

Our numerical results are obtained using CTEQ5M parton distribution functions

for the calculation of the NLO cross section, and CTEQ5L parton distribution

functions for the calculation of the lowest order cross section [79]2. The NLO

2Since these PDF sets have been updated after the publication of this investigation, we have
checked that using current PDF sets (CTEQ6) does not have a significant effect on the results
presented here and hence we have not updated our plots.
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Figure 4.5. σNLO and σLO for pp̄ → bb̄h at
√

s = 2 TeV (top) and for pp → bb̄h at√
s=14 TeV (bottom) as a function of the renormalization/factorization scale µ, for

Mh = 120 GeV. The curves labeled σLO,OS and σNLO,OS use the OS renormalization
scheme for the bottom quark Yukawa coupling, while the curves labeled σLO,MS and
σNLO,MS use the MS scheme.
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Figure 4.6. The absolute value of the percentage difference
∆(%) = (σNLO,OS − σNLO,MS)/(σNLO,OS + σNLO,MS) for pp̄ → bb̄h at

√
s = 2 TeV

(top) and for pp → bb̄h at
√

s = 14 TeV (bottom) as a function of the
renormalization/factorization scale µ, for Mh = 120 GeV. The OS and MS labels
refer to the renormalization scheme chosen for the bottom quark Yukawa coupling.
The curves labeled as ∆(mb(µ)1l) and ∆(mb(µ)2l) use the MS bottom quark Yukawa
coupling with the 1-loop running mass of Eq. (4.17) and the 2-loop running mass of
Eq. (4.18), respectively.
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pp → bb̄h at

√
s = 14 TeV (bottom) as a function of the cut imposed on the final

state bottom and anti-bottom transverse momentum (pb
T ), for Mh = 120 GeV and

µ=µ0 =mb + Mh/2.
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(LO) cross section is evaluated using the 2-loop (1-loop) evolution of αs(µ) with

αNLO
s (MZ) = 0.118. The bottom quark pole mass is taken to be mb = 4.6 GeV. In

the OS scheme the bottom quark Yukawa coupling is calculated as gbb̄h =mb/v, while

in the MS scheme as gbb̄h(µ) = mb(µ)/v, where we use mb(µ)1l from Eq. (4.17) for

σLO and mb(µ)2l from Eq. (4.18) for σNLO.

We evaluate the fully exclusive LO and NLO cross sections for bb̄h production by

requiring that the transverse momentum of both final state bottom and anti-bottom

quarks be larger than 20 GeV (pb
T >20 GeV), and that their pseudorapidity satisfy the

condition |ηb|<2 for the Tevatron and |ηb|<2.5 for the LHC. This corresponds to an

experiment measuring the Higgs decay products along with two high pT bottom quark

jets that are clearly separated from the beam. Furthermore, we present LO and NLO

transverse momentum and pseudorapidity distributions. In order to better simulate

the detector response, the gluon and the bottom/anti-bottom quarks are treated as

distinct particles only if the separation in the azimuthal angle-pseudorapidity plane is

∆R>0.4. For smaller values of ∆R, the four momentum vectors of the two particles

are combined into an effective bottom/anti-bottom quark momentum four-vector.

4.2.1.1 Standard Model results

In Fig. 4.5 we show, for Mh =120 GeV, the dependence of the LO and NLO cross

sections for pp̄ → bb̄h at the Tevatron (top) and for pp → bb̄h at the LHC (bottom)

on the unphysical factorization and renormalization scale, µ, when using either the

OS or the MS renormalization schemes for the bottom quark Yukawa coupling. In

both the OS and MS schemes the stability of the cross section is greatly improved at

NLO, given the much milder scale dependence with respect to the corresponding LO

cross section. The results presented in Fig. 4.5 are obtained by setting µ=µr =µf ,

i.e. by identifying the renormalization (µr) and factorization (µf) scales. We have

checked that varying them independently does not affect the results significantly. By

varying the scale µ in the ranges 0.7µ0 < µ < 4µ0 (Tevatron) and 0.5µ0 < µ < 8µ0
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(LHC), when using the OS scheme for the bottom quark Yukawa coupling, and in

the ranges 0.4µ0 < µ < 2µ0 (Tevatron) and 0.2µ0 < µ < 2µ0 (LHC) when using the

MS scheme, i. e. in the plateau regions, the value of the NLO cross section varies by

at most 15-20% (where µ0 =mb + Mh/2) .

As can be seen in Fig. 4.5, the cross section calculated with gbb̄h in the MS

scheme shows a better perturbative behavior, since the difference between σLO and

σNLO is smaller. This is in part due to the fact that the LO cross section is

calculated using mb(µ)1l and therefore already contains some of the corrections from

the renormalization of the bottom quark Yukawa coupling that appear in the NLO

cross section as well as at higher order. This observation seems to justify the use

of mb(µ)1l at LO and mb(µ)2l at NLO. One also observes that the MS NLO cross

section is better behaved at low values of the renormalization/factorization scales.

At the same time, both the OS and MS cross sections show well defined but distinct

regions of least sensitivity to the renormalization/factorization scale. In both cases

this happens in the region where the LO and NLO cross section are closer. The

variation of the NLO cross section with µ about its point of least sensitivity to

the renormalization/factorization scale is almost the same whether one uses the OS

or MS schemes for the bottom quark Yukawa coupling. This indicates that the

running of the Yukawa coupling is not the only important factor to determine the

overall perturbative stability of the NLO cross section.

It is interesting to note that the MS calculation exhibits an area of least sensitivity

to the renormalization/factorization scale in the vicinity of µ = 0.5µ0, or µ ≈ Mh/4.

It has been shown by the authors of [95] that this value of the factorization scale

greatly improves the convergence of the perturbative calculation for the 5FNS process

bb̄ → h. This value of µf was extracted from kinematic studies of the behavior of

the the bottom quark’s pT in the NLO correction, gb → bh, to the tree-level process

bb̄ → h. In fact, the NNLO cross section for the inclusive mode also exhibited

a plateau in this range of µf lending credence to the earlier claim of the proper
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factorization scale for the calculation of higher-order corrections to the production

of Higgs bosons in association with bottom quarks [85].

As discussed in Section 4.1.3, the numerical difference between the two renormal-

ization schemes can be significant. This is illustrated in Fig. 4.6 where we plot the

absolute values of the relative difference, ∆=(σNLO,OS−σNLO,MS)/(σNLO,OS+σNLO,MS),

between the hadronic cross sections σNLO,OS and σNLO,MS at both the Tevatron and

the LHC. As discussed in detail at the parton level in Section 4.1.3 (see ∆̂ defined

in Eq.(4.23)), the difference between the two schemes is scale dependent and can be

very big for small and large scales. At the LHC, the relative difference can be well

approximated by ∆ = 1
2AB with A = αs

4πgNLO/gLO and B = (1 − (mb/mb)
2), where

gNLO,LO correspond to the gij
NLO,LO contributions of Eqs. (4.21) and (4.22) calculated

at hadron level. For instance, at µ = 0.7µ0, A = 0.28 and B = 0.57, while at µ = 4µ0,

A = 0.92 and B = 0.66, which shows that the difference between the MS and the

OS schemes of the bottom quark is not dominated by the running of the bottom

quark mass as it would be the case when the majority of the NLO corrections can

be absorbed in the running of mb.

From both the observed similar scale dependence of σNLO in both schemes and

the large numerical difference due to the corrections that cannot be absorbed in the

running of mb, we conclude that the use of the MS bottom quark Yukawa coupling

should probably not be overemphasized. It is probably a good approximation to take

the difference between σNLO,OS and σNLO,MS at their points of least scale sensitivity

as an upper bound on the theoretical error of the NLO cross section, on top of

the uncertainty due to the residual scale dependence. This would amount to an

additional 15-20% uncertainty arising from the dependence on the bottom quark

Yukawa coupling renormalization scheme.

In Fig. 4.7 we illustrate the dependence of the exclusive cross section on the pT

cut imposed on the final state bottom and anti-bottom quarks, at both the Tevatron

(top) and the LHC (bottom). We plot the LO and NLO cross sections obtained
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using the MS bottom quark Yukawa coupling. Reducing the pT cut from 25 GeV

to 10 GeV approximately increases the cross section by a factor of four. However,

as the pT cut is reduced, the theoretical calculation of the cross section becomes

more unstable, because the integration over the phase space of the final state bottom

quarks approaches more and more a region of collinear singularities.

Finally, in Figs. 4.8, 4.9, 4.10, and 4.11 we plot the LO and NLO transverse

momentum (pT ) and pseudorapidity (η) distributions of the final state particles,

the bottom and anti-bottom quarks and the Higgs boson, both for the Tevatron

and for the LHC. Both LO and NLO differential cross sections are obtained in the

SM and using the OS scheme for the bottom quark Yukawa coupling. For the

renormalization/factorization scale we choose µ = 2mb + Mh at the Tevatron and

µ = 2(2mb + Mh) at the LHC. These two scales are well within the plateau regions

where the OS NLO cross sections vary the least with the value of µ. Similar results

can be obtained using the MS bottom quark Yukawa coupling.

In Fig. 4.8 we show the LO and NLO pT distributions of the bottom or anti-bottom

quark with highest pT , while Fig. 4.9 displays the pT distributions of the SM Higgs

boson. The pseudorapidity distributions of the bottom quark and the Higgs boson are

shown in Fig. 4.10 and Fig. 4.11, respectively. The inclusion of the NLO corrections

causes the cross sections to be more sharply peaked around low pb,h
T and around

ηb,h =0.

4.2.1.2 MSSM results

The rate for bb̄h production can be significantly enhanced in a supersymmetric

model with large values of tanβ (see Eqs. (1.26)-(1.31) in Section 1.2.2 for details on

Yukawa couplings). By replacing the SM top and bottom quark Yukawa couplings

with the corresponding MSSM ones, our calculation can then be straightforwardly

generalized to the case of the scalar Higgs bosons of the MSSM.
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Figure 4.8. Transverse momentum distributions at LO and NLO of the bottom or
anti-bottom quark with the largest pT . Shown are the pmax

T distributions for pp̄ → bb̄h
production at

√
s = 2 TeV (left) and pp → bb̄h production at

√
s = 14 TeV (right)

in the SM and using the OS scheme for the bottom quark Yukawa coupling. At the
Tevatron we choose µ=2mb + Mh, while at the LHC we choose µ=2(2mb + Mh).

The MSSM Higgs boson masses and the mixing angle α have been computed up

to two-loop order using the program FeynHiggs [1]. In Tables 4.2.1.2 and 4.2 we

provide the values of the input parameters ((Mh0 , tanβ) or (MH0 , tanβ)) and the

resulting values of α used in the calculation of the top and bottom quark Yukawa

couplings to the light and heavy neutral MSSM scalar Higgs bosons. This choice

of MSSM parameters takes into account present experimental limits on the MSSM

parameter space, but represents otherwise just one among many possible realizations
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Figure 4.9. Transverse momentum distributions at LO and NLO of the SM Higgs
boson. Shown are the ph

T distributions for pp̄ → bb̄h production at
√

s=2 TeV (left)
and pp → bb̄h production at

√
s=14 TeV (right) in the SM and using the OS scheme

for the bottom quark Yukawa coupling. At the Tevatron we choose µ = 2mb + Mh,
while at the LHC we choose µ=2(2mb + Mh).

of the MSSM parameter space. The results obtained with this choice of MSSM input

parameters illustrate the typical enhancements over the SM results one can expect

when considering the production of neutral scalar Higgs bosons in association with

bottom quarks.

The top part of Fig. 4.12 compares the NLO pp̄ → bb̄h SM cross section at the

Tevatron with the corresponding cross section for production of the lightest neutral

scalar Higgs boson in the MSSM for tanβ = 10, 20, and 40. A large enhancement
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Figure 4.10. Pseudorapidity distributions at LO and NLO of the bottom quark.
Shown are the ηb distributions for pp̄ → bb̄h production at

√
s = 2 TeV (left) and

pp → bb̄h production at
√

s = 14 TeV (right) in the SM and using the OS scheme
for the bottom quark Yukawa coupling. At the Tevatron we choose µ = 2mb + Mh,
while at the LHC we choose µ = 2(2mb + Mh).

of up to three orders of magnitude is observed. As the light neutral Higgs boson

mass approaches its maximum value, the mixing angle α becomes very small, as can

be clearly seen in Table 4.2.1.2. This has the effect of suppressing the bb̄h0 rates at

this point. A similar effect can be observed in the production of a heavy neutral

Higgs boson when MH0 is approaching its minimum value (see Table 4.2), as shown

in the bottom part of Fig. 4.12. Again, we compare the production of the SM Higgs
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Figure 4.11. Pseudorapidity distributions at LO and NLO of the SM Higgs boson.
Shown are the ηh distributions for pp̄ → bb̄h production at

√
s = 2 TeV (left) and

pp → bb̄h production at
√

s = 14 TeV (right) in the SM and using the OS scheme
for the bottom quark Yukawa coupling. At the Tevatron we choose µ = 2mb + Mh,
while at the LHC we choose µ = 2(2mb + Mh).

boson with that of the heavier neutral scalar Higgs boson of the MSSM and observe

a significant enhancement of the rate in the MSSM for large tanβ.

4.2.2 Higgs production with one high-pT b jet

Next, we consider the case in which a Higgs boson is produced with at least one

high-pT bottom quark, where the cross section can be calculated using either the

4FNS (qq̄, gg → b(b̄)h + (b)b̄h) or the 5FNS (gb → bh and gb̄ → b̄h) as discussed
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Figure 4.12. σNLO,MS for pp̄ → bb̄h production at
√

s=2 TeV (top) and pp → bb̄h
production at

√
s=14 TeV (bottom) in the SM and in the MSSM with tan β =10, 20,

and 40. For the Tevatron we considered pp̄ → bb̄h0 with Mh0 = 100, 110, 120, and
130 GeV, while for the LHC we considered pp → bb̄H0 with MH0 =120, 200, 400, 600,
and 800 GeV. For each (Mh0 , tanβ) and (MH0 , tan β) point, the corresponding values
of α and MA are listed in Tables 4.2.1.2 and 4.2.
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Table 4.1. Values of α and MA, computed up to two-loop order by using the
program FeynHiggs [1], corresponding to different choices of tan β and Mh0 . In the
calculation of α and MA we choose the genuine SUSY input parameters as follows:
Mg̃ =Mt̃L =Mt̃R =Mb̃L

=Mb̃R
=1 TeV, MLR

t =2 TeV, Ab =At =MLR
t + µ cotβ, and

µ=M2 =200 GeV.

tanβ = 10
Mh0 [GeV] 100 110 120 130
MA [GeV] 102.42 113.86 127.95 264.72

α [rad] -1.3249 -1.1963 -0.9054 -0.1463
tanβ = 20

Mh0 [GeV] 100 110 120 130
MA [GeV] 100.61 110.95 121.89 146.72

α [rad] -1.4420 -1.3707 -1.1856 -0.3108
tanβ = 40

Mh0 [GeV] 100 110 120 130
MA [GeV] 100.15 110.23 120.46 133.71

α [rad] -1.5007 -1.4601 -1.3444 -0.4999

Table 4.2. Values of α and MA, computed up to two-loop order by using the
program FeynHiggs [1], corresponding to different choices of tan β and MH0 . In the
calculation of α and MA we choose the genuine SUSY input parameters as follows:
Mg̃ = Mt̃L = Mt̃R = Mb̃L

= Mb̃R
= 1 TeV, MLR

t = 0, Ab = At = MLR
t + µ cotβ, and

µ = M2 = 1 TeV.

tanβ = 10
MH0 [GeV] 120 200 400 600 800
MA [GeV] 108.05 198.55 399.41 599.64 799.74

α [rad] -0.9018 -0.1762 -0.1140 -0.1057 -0.1030
tanβ = 20

MH0 [GeV] 120 200 400 600 800
MA [GeV] 116.45 199.56 399.81 599.89 799.91

α [rad] -0.5785 -0.0901 -0.0574 -0.0531 -0.0517
tanβ = 40

MH0 [GeV] 120 200 400 600 800
MA [GeV] 118.92 199.82 399.92 599.95 799.96

α [rad] -0.3116 -0.0460 -0.0289 -0.0267 -0.0259
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at the beginning of this chapter. In fact, assessing the validity and compatibility

of the two schemes has recently been the subject of much theoretical interest, since

early comparisons of the LO cross sections (using µh ≈ Mh) seemed to indicate

that the 5FNS cross section prediction was much larger than that predicted by the

4FNS calculation (see Ref. [92]). This channel has also been the subject of much

experimental interest, since requiring one final state b quark allows the unambiguous

measurement of the bottom quark Yukawa coupling and significantly enhances the

rate with respect to the case when both b quarks are identified (see Section 4.2.1).

Higgs boson production with one b quark jet followed by h → bb̄ has been extensively

studied by the CDF and D0 collaborations [34, 35] and is going to play a major role

in the experimental searches for Higgs bosons beyond the SM at the Tevatron and at

the LHC. Thus, a more dedicated effort aimed at refining the theoretical predictions

for both total and differential cross sections is mandatory.

Recently, the first comparison of the NLO QCD total cross sections for qq̄, gg →
b(b̄)h [84, 88] and for bg → bh [87] processes has been presented in Ref. [96]. In

this section, we concentrate on the comparison of total and differential cross sections

at NLO QCD in the 4FNS and 5FNS schemes. This is the first comparison of

differential cross sections in the two calculational schemes and it is important to

assess the residual theoretical uncertainties in view of future experimental analyses.

In particular, we discuss the effects of including the closed top quark loop diagram

of Fig. 4.13, a contribution that had been previously neglected in the NLO 5FNS

calculation of bg → bh.

As in the last section, the NLO QCD corrections to pp, pp̄ → b(b̄)h production

in the 4FNS consist of calculating the O(αs) virtual and real QCD corrections to

the qq̄, gg → bb̄h tree level processes [84, 88], imposing identification cuts on the

transverse momentum and pseudorapidity of either the b or b̄ final state quark

(antiquark). Results from the two existing calculations [84, 88] have been compared

and found to be in good agreement (see Ref. [96]).
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Figure 4.13. Feynman diagram for the closed top quark loop contribution to
gb → bh.

The NLO QCD corrections to pp, pp̄ → bh + b̄h production in the 5FNS have

been presented in Ref. [87] and are encoded in the Monte Carlo program MCFM

[97]. In Ref. [87], the calculation of the cross sections for gb → bh is performed in the

mb =0 approximation (except for the b quark Yukawa coupling), and for this reason

the only virtual diagram containing a top quark loop (see Fig. 4.13) is neglected.

Indeed, the contribution of this diagram to the virtual cross section is proportional

to gtt̄hgbb̄hmb/mt and therefore vanishes when the kinematic bottom quark mass is set

to zero. At the same time, in the SM (gSM
bb̄h

=mb/v and gSM
tt̄h =mt/v) the contribution

of this diagram is overall of order g2
bb̄h

as all other diagrams retained in the mb = 0

approximation. So, it can play a relevant numerical role in the comparison between

the 5FNS and the 4FNS, where diagrams with closed top quark loops are included

(see Fig. 4.4). To investigate this issue we have added this contribution to the

gb → bh NLO calculation of total and differential cross sections and implemented it

into MCFM. All numerical results in the 5FNS presented here are obtained with this

modified version of MCFM3.

Our LO numerical results are obtained using CTEQ6L1 PDFs [89, 98] and the

1-loop evolution of αs, while for NLO results we use CTEQ6M PDFs and the 2-loop

3It should be noted that the contribution from the top loop diagram is only important for the
comparison performed using SM Yukawa couplings. Indeed, in the MSSM with large tan β, the top
quark Yukawa coupling is highly suppressed and the contribution from these diagrams is negligible.
However, since the comparisons between 4FNS and 5FNS calculations have always been presented
using SM Yukawa couplings [83, 92, 96], this is the case we discuss.
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Figure 4.14. Total LO and NLO cross sections for pp, pp̄ → b(b̄)h production in the
4FNS as a function of µ=µr =µf for Mh =120 GeV, at both the Tevatron (top) and
the LHC (bottom).

evolution of αs, with αs(MZ)=0.118. We use the MS running b quark mass in the

b quark Yukawa coupling, evaluated at 1- and 2-loops respectively for LO and NLO

results (with pole mass mb =4.6 GeV). Our renormalization scheme decouples the top

quark from the running of mb(µ) and αs(µ) and is explained in detail in Chapter 3

and Section 4.1.3. We work in the SM but the results can be straightforwardly
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Figure 4.15. Total NLO cross section for pp, pp̄ → b(b̄)h production at the Tevatron
and the LHC as a function of Mh. We have assumed µr =µf =µ0/2 for the central
curves (see inlays) and varied µr and µf independently to obtain the uncertainty
bands, as explained in the text. On the left, the solid curves correspond to the
4FNS, the dashed curves to the 5FNS. On the right, we show the 5FNS with (solid)
and without (dashed) the top quark loop contribution.
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generalized to the case of the scalar Higgs bosons of a supersymmetric extension of

the SM as discussed in Section 4.1.1 (see Eq. (4.2)).

In order to simulate the experimental cuts, we require one of the final state b

quarks to have pT > 20 GeV and pseudo-rapidity | η |< 2.0 for the Tevatron and

| η |< 2.5 for the LHC. In the NLO real gluon emission, the final state gluon and b

quarks are considered as separate particles only if ∆R>0.4 (∆R=
√

(∆η)2 + (∆φ)2

where φ is the azimuthal angle measured with respect to the beam axis).

In Fig. 4.14 we show, for Mh =120 GeV, the dependence of the LO and NLO total

cross sections, calculated in the 4FNS, on the arbitrary renormalization/factorization

scale µ (with µr = µf = µ). The NLO result has considerably less sensitivity to the

scale choice, and the region around µ ≈ µ0/2 (µ0 = mb + Mh/2) shows the least

sensitivity to the variation of µ. For this reason we use µ0/2 as our reference scale

in the following plots, whenever µr =µf . Analogous results for the 5FNS total cross

sections have been presented in Ref. [87].

Fig. 4.15 shows the dependence of the NLO total cross sections on Mh, in both

the 4FNS and 5FNS (left) and the effect of including the top loop diagram in the

5FNS calculation (right). The bands illustrate the theoretical uncertainty due to

the independent variation of µr and µf about the central value µr = µf = µ0/2 (see

inlays), between 0.2µ0 and µ0. From the left hand plots, it is extremely interesting

to note that the 5FNS band is almost completely within the 4FNS band, and the

corresponding central values are nearly identical at the Tevatron and very close at

the LHC. The smaller scale dependence of the 5FNS calculation is a direct effect of

resumming the collinear logarithms and the agreement between the central values

(inlays), in particular, is direct evidence that the collinear logarithms are indeed

the dominant contribution in the 4FNS calculation since these are the only pieces

accounted for in the 5FNS. The right hand plots show that including the closed

top quark loop diagrams lowers the 5FNS cross section (by ≈ 15% at the Tevatron

and ≈ 10% at the LHC, when Mh = 120 GeV and µr = µf = 0.5µ0) and makes the
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theoretical prediction in the 4FNS and 5FNS fully compatible (see for comparison

Fig. 6 in Ref. [96]). Note that the bands only give an indication of the theoretical

uncertainty of each approach due to the residual scale dependence. We shall examine

the uncertainties coming from the PDFs in Section 4.3.
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Figure 4.16. dσ/dph
T at the Tevatron (top) and the LHC (bottom) for

Mh = 120 GeV and µr = µf = µ0/2. We show the NLO results in the 4FNS
(solid) and 5FNS (dashed), using two different bin sizes, 2 GeV (left) and 12 GeV
(right).
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Finally, in Figs. 4.16-4.18 we compare the results for the pT and η distributions of

the Higgs boson in both the 4FNS and 5FNS, at the Tevatron and the LHC. We see,

in general, a good agreement between the two schemes, except in the region around

ph
T ' pb,min

T . This is particularly dramatic in the ph
T distributions where, around

ph
T ' 20 GeV, the 5FNS NLO calculation is highly unstable. This instability is a

well-known effect (e.g. see Refs. [99] and [100]) and arises due to the fact that, in

the region slightly above pb,min
T , the NLO differential cross section (dσ/dph

T )NLO is a

convolution of the LO differential cross section (dσ/dph
T )LO with a soft gluon factor,

Ksoft(z), made up of the sum of the virtual and real contributions:
(

dσ

dph
T

)

NLO

=

∫

dz

(

dσ

dph
T

)

NLO

Ksoft(z) (4.26)

Due to the kinematics of the two-body final state in the LO process, the cut on

pb
T translates into an effective cut on ph

T , thus making (dσ/dph
T )LO a non-smooth

function. Additionally, just above the threshold at pb,min
T , the soft gluon factor takes

the form of a plus distribution, which is defined under integration with a smooth

function by:
∫ 1

0

dzf(z)[g(z)]+ =

∫ 1

0

dz(f(z) − f(1)) g(z) . (4.27)

However, when a plus distribution is convoluted with a non-smooth function, such as

(dσ/dph
T )LO, logarithmic divergences result. These instabilities can be reabsorbed

by using a larger bin size (see inlays), and could therefore be interpreted as a

sort of theoretical resolution for the 5FNS. The instabilities could be removed

by a systematic resummation of threshold corrections [101, 99], but this is not

implemented in MCFM.

Fig. 4.18 illustrates the impact of NLO QCD corrections on ph
T and ηh distri-

butions in terms of a differential K-factor (dσNLO/dσLO). It is interesting to note

that the 4FNS and 5FNS agree at large ph
T but they differ substantially at low ph

T .

However, this difference is also due to the kinematics of the two-body final state of

the LO process gb → bh. Due to the effective cut on ph
T mentioned above, in the
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region below pb,min
T , the distribution (dσ/dph

T )LO is zero and the ratio (dσNLO/dσLO)

is undefined. Lastly, as can be seen in Fig. 4.18, there are regions of ph
T and ηh where

the NLO QCD corrections can considerably affect the shape of the distributions.
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Figure 4.17. dσ/dηh at the Tevatron and the LHC for Mh = 120 GeV and
µr =µf =µ0/2. We show the NLO results in the 4FNS (solid) and 5FNS (dashed).

4.2.3 Inclusive higgs production with bottom quarks

Finally, we consider the case where the bottom quarks which are produced in

association with the Higgs boson are not observed. As mentioned earlier, the

dominant 5FNS process in this situation is bb̄ → h. Although the signal for this

process will be swamped by large QCD backgrounds at the Tevatron, this mode

could be among the Higgs discovery channels at the LHC for heavy MSSM Higgs

bosons (H0, A0) by searching for the rare Higgs boson decay modes into µ+µ− and

τ+τ−.
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Figure 4.18. The ratios of the NLO and LO ph
T and ηh distributions at the Tevatron

and the LHC for Mh =120 GeV and µr =µf =µ0/2. We show the ratios in the 4FNS
(solid) and 5FNS (dashed).
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Figure 4.19. The total cross section as a function of Mh for bb̄h production when
no b quarks are tagged in the final state for the Tevatron (left) and the LHC (right).

The 4FNS calculation of the NLO corrected process pp, pp̄ → (bb̄)h is identical

to that discussed in the previous sections with the exception that, in this case, there

are no restrictions placed on the pT and η of the bottom quarks.

The higher-order corrections to the 5FNS process bb̄ → h involve corrections in

both αs and Λ−1
b , as discussed at the beginning of this chapter. The NLO corrections

have been known for quite some time [92], however, the scale dependence at NLO is

still quite significant. Recently, the NNLO corrections to bb̄ → h have been computed

and the results exhibit a drastically reduced scale dependence providing a very stable

result [85].

In Fig. 4.19, we compare the NLO 4FNS and NNLO 5FNS calculations as a

function of the Higgs boson mass at both the Tevatron and the LHC. The uncertainty

bands are produced by varying the values of µr and µf about the central value

µr =µf =µ0/2 between 0.2µ0 and µ0. These plots show that, for low Higgs masses,

the calculations agree within their respective scale uncertainties. However, for larger

Higgs masses, the 5FNS yields larger cross sections than those of the 4FNS [85]. It

is worth noting, though, that top loop diagrams (similar to those discussed in the
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last section) are not included in the 5FNS calculation. The top loop diagrams in the

4FNS calculation lower the cross sections by ∼ 4% at the Tevatron and by ∼ 9% at

the LHC. In any case, at large tan β, the top loop contributions become negligible

and the agreement between the two calculational schemes should improve.

4.3 PDF uncertainties

Besides the residual renormalization/factorization scale dependence after higher-

order corrections have been included, another major source of theoretical uncertainty

for cross section predictions at Hadron colliders comes from the Parton Distribution

Functions. Unfortunately, PDFs are plagued by uncertainties which arise either

from the non-perturbative, initial starting distributions used to fit the available

data or from the DGLAP scale evolution to the higher energies relevant at hadron

colliders [59, 90, 91].

Recently, several collaborations have provided automatic methods to estimate

the theoretical uncertainty on physical observables due to the uncertainty in the

PDFs. Here, we focus on the method introduced by the CTEQ collaboration (see

Ref. [89]), since we have used CTEQ PDFs in our work. The details of this method

are beyond the scope of this thesis, however, we give a brief explanation below. First,

the nominal set of PDFs (e.g. CTEQ6) is constructed by fitting a non-perturbative

core equation to data from low-energy experiments designed to measure PDFs. The

core equation, in the method used by CTEQ, is parameterized by 20 independent

parameters which are dialed to fit the data. Once the nominal set is fixed, the 20

parameters are then varied in a well-defined manner to produce an additional 40 sets

of PDFs. These sets serve as a map of the neighborhood around the nominal fit to the

data. Indeed, one can then use the 40 sets to estimate the uncertainty from the PDFs

on a physical observable in the following way 4: first, the central value cross section

4We have also performed this analysis using the PDF sets of the MRST collaboration [102]. These
sets are made up of 30 sets in addition to the nominal fit and, hence, map less of the neighborhood
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σ0 is calculated using the global minimum PDF (i.e. CTEQ6M). The calculation

of the cross section is then performed with the additional 40 PDFs to produce 40

different predictions, σi. For each of these, the deviation from the central value is

calculated to be ∆σ±
i = |σi − σ0| when σi

>
<σ0. Finally, to obtain the uncertainties

due to the PDFs the deviations are summed quadratically as ∆σ± =
√

∑

i ∆σ±
i

2

and the cross section including the theoretical uncertainties arising from the PDFs

is quoted as σ0|+∆σ+

−∆σ−. Recently, a similar analysis has been performed for other SM

Higgs production modes [103].

For the light partons (i.e. gluons and light quarks), there are three distinct regions

of the uncertainties as a function of the momentum fraction carried by the parton, x:

decreasing uncertainties at low x, constant or oscillating ones at intermediate x, and

increasing uncertainties at high x. The magnitude of these uncertainties depends

on the parton considered and the CM energy Q2. For light quarks at high Q2, the

three regions are clearly observed with uncertainties typically in the 10-20% range

in the low and high x regions and, in the intermediate region, they are typically less

than a few percent. For the gluons, the three regions are not as distinct and the

uncertainties are typically higher than that of light quarks (see Fig. 4.20).

However, the heavy quarks, in particular the bottom quark, are treated in a

different manner. As we have seen, bottom quarks inside protons (or antiprotons)

arise from gluon splitting g → bb̄ and are not believed to be intrinsic partons. Indeed,

the b-quark PDF is not fit from data, but is instead derived from measurements of the

gluon PDF using the perturbative expression in Eq. (4.4). Therefore, the uncertainty

in the b PDF is intimately linked to the uncertainty of the gluon PDF as shown in

Fig. 4.20. The fact that the b PDF uncertainty curve appears to be a shifted version

of the gluon curve at higher values of x can be explained in a simple, physical way:

gluons at higher values of x split into bottom quarks which carry smaller values of x.

around the global minimum. This results in smaller spread uncertainties than the CTEQ analysis.
Therefore, we only show results using the CTEQ sets and quote these results as an upper limit of
the uncertainty from PDFs.
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Figure 4.20. The uncertainties for the bottom quark and gluon PDFs at Q = 35
GeV as a function of x.

In other words, the uncertainties of gluons at high values of x feed down to bottom

quarks at smaller x, hence explaining the shifted appearance of the bottom quark

PDF with respect to that of the gluon [104].

In Figures 4.21 and 4.22 we plot the total NLO cross section for gb → bh obtained

with MCFM [97] at the Tevatron and LHC respectively. Here, we compare the

uncertainties due to the residual scale dependence and due to the PDF uncertainty,

both for the total cross section (top) and the total cross section normalized to the

central value calculated with CTEQ6M (bottom). From Figure 4.22 one can see

that, at the LHC, the theoretical uncertainty is dominated by the residual scale

dependence. Due to the large CM energy at the LHC, the gluons and bottom quarks

in the initial state have small x values and, hence, small PDF uncertainties typically

in the 5-10% range.
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both uncertainty bands have been normalized to the central value of the total cross
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In contrast, due to the smaller CM energy, the uncertainty from the PDFs at the

Tevatron (Figure 4.21) are comparable and even larger than the uncertainty due to

the residual scale dependence over the full Higgs mass range. The smaller CM energy

results in higher-x gluons and bottom quarks in the initial state, for which the PDF

uncertainties can be in the 10-30% range.

Finally, in Figure 4.23, we plot the normalized total cross sections of gb → bh and

gg → b(b̄)h and compare their respective uncertainties due to the PDFs. We see that,

at both the Tevatron and the LHC, the PDF uncertainties are almost identical for

both the gg and gb initial states. This can be understood since most of the reactions

take place at a value of x where the bottom quark and gluon PDF uncertainties are

similar.

4.4 Summary

The production of a non-SM Higgs boson in association with bottom quarks

can play an extremely important role at both the Tevatron and the LHC. For the

case of the MSSM with large tanβ, this channel dominates over all other Higgs

production processes and could provide the first signal of supersymmetry at Run II

of the Tevatron.

The cross sections for inclusive and exclusive bb̄h production have different

analytical properties and need to be considered separately. In this chapter, we have

discussed in detail how to approach both inclusive and exclusive calculations and we

have shown how the NLO calculation of qq̄, gg → bb̄h presented in this thesis has

been instrumental to solving the outstanding issue of comparing 4FNS and 5FNS

approaches to the calculation of inclusive cross sections. We have compared the 4FNS

prediction for the semi-inclusive (inclusive) process with the NLO (NNLO) 5FNS

calculations of gb → bh (bb̄ → h). For the semi-inclusive process, we showed that

by including a previously neglected top quark loop diagram in the 5FNS calculation,

the two approaches (i.e. 4FNS and 5FNS) agree spectacularly. Although this is
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a purely academic exercise, since the top quark loops in both calculations become

negligible for large tan β where bb̄h production is important, this solved a decade old

puzzle concerning the largeness of 5FNS predictions compared to the corresponding

4FNS predictions. Comparing the NLO cross section for gg, qq̄ → (bb̄)h where the b

quarks are unobserved with the NNLO calculation of bb̄ → h, we showed that these

calculations agree within their theoretical uncertainties, but overall, the 5FNS cross

section was slightly larger over most of the Higgs mass range. However, the 5FNS

calculation does not include any top quark loop diagrams which could well explain

the small discrepancy between the two calculations. Both the inclusive and exclusive

NLO cross sections show a much reduced renormalization/factorization scale depen-

dence, leading to much more stable theoretical predictions. Our investigation has

also pointed to a residual renormalization scheme dependence in the definition of the

bottom quark mass appearing in the overall Yukawa coupling. We have used both OS

and MS schemes for mb, checked that, as expected, their difference is higher-order

in the perturbative expansion, and conservatively concluded that at most 15-20%

uncertainty should be expected from renormalization scheme dependence.

Finally, we investigated the theoretical uncertainty in bb̄h production coming from

the parton distribution functions. We showed that, at the Tevatron, the uncertainties

coming from PDFs can be comparable or even larger than the uncertainties associated

with scale dependence. At the LHC, however, the uncertainties from the PDFs are

quite small compared to the residual scale dependence.
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APPENDIX A

BOX AND PENTAGON INTEGRALS

We label the various one-loop box and pentagon scalar and tensor integrals

appearing in the calculations of the O(αs) virtual corrections to

q(q1) + q̄(q2) → t(pt) + t̄(p′t) + h(ph)

and

g(q1) + g(q2) → t(pt) + t̄(p′t) + h(ph)

according to the diagram where they are encountered. Moreover, we denote by D0,

D1µ, D2µν, and D3µνρ the scalar and tensor box integrals with one, two, and three

tensor indices, and by E0, E1µ, E2µν, and E3µνρ the analogous scalar and tensor

pentagon integrals. With this convention D0
D

(k),qq̄
i

and D0
D

(k),gg
i,j

, for instance, are

the scalar box integrals appearing in box diagrams D
(k),qq̄
i and D

(k),gg
i,j , as labeled in

Figs. 3.7 and 3.11. The external momenta are labeled as shown above, where q1, q2

are incoming and pt, p
′
t, ph are outgoing momenta with q1 + q2 = pt + p′t + ph. It is

convenient to express our results in terms of the kinematic invariants of Eq. (3.36)

and:

ω1 = (pt + ph)
2 − m2

t ,

ω2 = (p′t + ph)
2 − m2

t . (A.1)

These kinematic invariants do not form a linearly independent set, but are related

by:

τ3 = σ − τ1 − ω2 and τ4 = σ − τ2 − ω1 . (A.2)

We also make frequent use of the shorthand notation Λa≡ ln(a/m2
t ) with a = σ, τi, ωi.
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In the following, we explicitly give only the box and pentagon integrals that

contain IR divergences. The IR divergences are extracted using dimensional reg-

ularization with d = 4 − 2ε. All of the box and pentagon integrals appearing in

the qq̄ → tt̄h calculation are a subset of the integrals appearing in the gg → tt̄h

calculation, hence, for convenience we present them together and note when an

integral appears in both calculations. For the case of gg → tt̄h, we only give results

for integrals arising from the s−channel and t−channel diagrams. The integrals for

the u−channel diagrams can be obtained from the integrals of the corresponding

t−channel diagrams by exchanging q1 ↔ q2, i.e. by exchanging τ1 ↔ τ3 and τ2 ↔ τ4.

Finally, the IR finite scalar integrals are evaluated by implementing the method

described in Ref. [54] and are cross checked against the FF package [66].

A.0.1 Box integrals

The scalar and tensor box integrals arising in the computation of box diagram

D
(k),qq̄(gg)
i,(j) are of the following form:

D0
D

(k),qq̄(gg)
i,(j)

, D1µ

D
(k),qq̄(gg)
i,(j)

, D2µν

D
(k),qq̄(gg)
i,(j)

, D3µνρ

D
(k),qq̄(gg)
i,(j)

= µ4−d

∫

ddk

(2π)d

1, kµ, kµkν, kµkνkρ

N1N2N3N4

,

(A.3)

where

N1 = (k2 − m2
0) , N2 = (k + p1)

2 − m2
1 ,

N3 = (k + p1 + p2)
2 − m2

2 , N4 = (k + p1 + p2 + p3)
2 − m2

3 , (A.4)

p1, p2, p3, and p4 =−p1 − p2 − p3 are the external (incoming) momenta connected

to the box topology, and m0, m1, m2, and m3 are the masses of the propagators in

the box loop. We write the tensor integrals as a linear combination of the linearly

independent tensor structures built of the independent external momenta pµ
1 , pµ

2 , and

pµ
3 plus the metric tensor gµν. Our notation for the box tensor integrals is as follows:
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D1µ = D
(1)
1 pµ

1 + D
(2)
1 pµ

2 + D
(3)
1 pµ

3 ,

D2µν = D
(0)
2 gµν + D

(11)
2 pµ

1p
ν
1 + D

(22)
2 pµ

2p
ν
2 + D

(33)
2 pµ

3p
ν
3

+ D
(12)
2 (pµ

1p
ν
2 + pν

1p
µ
2 ) + D

(13)
2 (pµ

1p
ν
3 + pν

1p
µ
3 ) + D

(23)
2 (pµ

2p
ν
3 + pν

2p
µ
3 ) ,

D3µνρ = D
(01)
3 (gµ,νpρ

1 + perm) + D
(02)
3 (gµ,νpρ

2 + perm) + D
(03)
3 (gµ,νpρ

3 + perm)

+ D
(111)
3 pµ

1p
ν
1p

ρ
1 + D

(222)
3 pµ

2p
ν
2p

ρ
2 + D

(333)
3 pµ

3p
ν
3p

ρ
3

+ D
(112)
3 (pµ

1p
ν
1p

ρ
2 + perm) + D

(113)
3 (pµ

1p
ν
1p

ρ
3 + perm)

+ D
(221)
3 (pµ

2p
ν
2p

ρ
1 + perm) + D

(223)
3 (pµ

2p
ν
2p

ρ
3 + perm)

+ D
(331)
3 (pµ

3p
ν
3p

ρ
1 + perm) + D

(332)
3 (pµ

3p
ν
3p

ρ
2 + perm) + D

(123)
3 (pµ

1p
ν
2p

ρ
3 + perm) ,

(A.5)

where “+perm” indicates that the sum over all possible permutations of the tensor

indices is understood. In the following we will give the full structure of the scalar

box integrals, including both pole and finite parts, while for the corresponding tensor

integrals we will only give the IR pole parts, since they can be of interest in checking

the IR structure of the virtual cross section. We will write the pole part of each

tensor integral coefficient as

D
(j)
i |IR−pole =

i

16π2
Nt∆IR(D

(j)
i ) ,

D
(jk)
i |IR−pole =

i

16π2
Nt∆IR(D

(jk)
i ) ,

D
(jkl)
i |IR−pole =

i

16π2
Nt∆IR(D

(jkl)
i ) , (A.6)

where Nt is defined in Eq. (3.26), and give for each box integral the non zero

∆IR(D
(j)
i ), ∆IR(D

(jk)
i ), and ∆IR(D

(jkl)
i ) coefficients.

A.0.1.1 Box scalar integrals D0
B

(1,2),qq̄
2

and D0
B

(1,2),gg
2,s

The scalar integrals appearing in diagrams B
(1),qq̄
2 and B

(1),gg
2,s can be parameterized

according to Eq. (A.3) with:
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N1 = k2 , N2 = (k + pt)
2 − m2

t ,

N3 = (k + pt + ph)
2 − m2

t , N4 = (k − p′t)
2 − m2

t . (A.7)

D0
B

(2),qq̄
2,s

(D0
B

(2),gg
2,s

) is obtained from D0
B

(1),qq̄
2,s

(D0
B

(1),gg
2,s

) by exchanging pt ↔ p′t.

The part of D0
B

(1)
2,s

which contributes to the amplitude squared is of the form:

D0
B

(1),qq̄
2

(D0
B

(1),gg
2,s

) =
i

16π2
Nt

1

ω1(σ − ω1 − ω2 + M2
h)

(

X−1

ε
+ X0

)

, (A.8)

where Nt is defined in Eq. (3.26). The pole part X−1 is:

X−1 = − 1

βtt̄

ln

(

1 + βtt̄

1 − βtt̄

)

, (A.9)

where βtt̄ is given in Eq. (3.37). The finite part X0 can be calculated using Ref. [105].

All tensor box integrals associated to B
(1)
2,s and B

(2)
2,s are IR finite.

A.0.1.2 Box scalar integral D0
B

(1,2),gg
7,t

The scalar integral appearing in diagram B
(1),gg
7,t , D0

B
(1),gg
7,t

, can be parameterized

according to Eq. (A.3) with:

N1 = k2 , N2 = (k + q1)
2 ,

N3 = (k + q1 − pt)
2 − m2

t , N4 = (k + q1 − pt − ph)
2 − m2

t . (A.10)

The part of D0
B

(1),gg
7,t

which contributes to the virtual amplitude squared is of the

form:

D0
B

(1),gg
7,t

=
i

16π2
Nt

(

− 1

ω1τ1

)(

X−2

ε2
+

X−1

ε
+ X0

)

, (A.11)

where the coefficients X−2, X−1, and X0 are given by:

X−2 =
1

2
,

X−1 = ln

(

τ2m
2
t

ω1τ1

)

,

X0 = Re

{

−5

6
π2 + ln2

(

ω1

m2
t

)

+ ln2

(

τ1

m2
t

)

− ln2

(

τ2

m2
t

)

168



+ 2 ln

(

ω1 + τ2

τ1

)

ln

(

τ2

ω1

)

+ 2 ln

(

τ1 − τ2

ω1

)

ln

(

τ2

τ1

)

− 2 Li2

(

τ1 − τ2 − ω1

τ1

)

− 2 Li2

(

ω1 + τ2 − τ1

ω1

)

+ 2 Li2

(

τ2(ω1 + τ2 − τ1)

ω1τ1

)

− I0

}

,

(A.12)

with

I0 = ln

(

τ1

τ2

)

ln

(

M2
h

m2
t

)

+

{

−Li2

(

1

λ+

)

+ ln

(

τ1

τ2

)

ln

(−τ2 − λ+(τ1 − τ2)

τ1 − τ2

)

− Li2

(

τ1

λ+(τ1 − τ2) + τ2

)

+ Li2

(

τ2

λ+(τ1 − τ2) + τ2

)

+ (λ+ ↔ λ−)

}

,

(A.13)

and

λ± =
1

2

(

1 ±
√

1 − 4m2
t

M2
h

)

. (A.14)

The tensor integrals associated with B
(1),gg
7,t also contain IR divergences. Using

the notation introduced in Eqs. (A.5) and (A.6), only the following coefficients of

D1µ

B
(1),gg
7,t

:

∆IR(D
(1)
1 ) =

1

2

1

τ1ω1

1

ε2
+

1

τ1ω1

[

−Λτ1 +
τ2

τ2 + ω1
(Λτ2 − Λω1)

]

1

ε
, (A.15)

and of D2µν

B
(1),gg
7,t

:

∆IR(D
(11)
2 ) = −1

2

1

τ1ω1

1

ε2
+

1

τ1ω1

[

Λτ1 −
τ 2
2

(τ2 + ω1)2
(Λτ2 − Λω1) −

ω1

τ2 + ω1

]

1

ε
,

(A.16)

are IR divergent.

D0
B

(2),gg
7,t

and the corresponding tensor integrals are obtained from D0
B

(1),gg
7,t

by

exchanging q1 ↔ q2 and pt ↔ p′t, i.e. by exchanging τ1 ↔ τ2 and ω1 ↔ ω2 in

Eqs. (A.11)-(A.16).
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A.0.1.3 Box scalar integrals D0
B

(1−4),qq̄
3

and D0
B

(1,2),gg
8,t

The scalar box integrals appearing in diagrams B
(1),qq̄
3 and B

(1),gg
8,t , D0

B
(1),qq̄
3

and

D0
B

(1)
8,t

, can be parameterized according to Eq. (A.3) with:

N1 = k2 , N2 = (k + q1)
2 ,

N3 = (k + q1 + q2)
2 , N4 = (k + q1 + q2 − p′t)

2 − m2
t . (A.17)

The part of D0
B

(1),qq̄
3

(D0
B

(1),gg
8,t

) which contributes to the virtual amplitude squared

is given by:

D0
B

(1),qq̄
3

(D0
B

(1),gg
8,t

) =
i

16π2
Nt

(

− 1

στ2

)(

X−2

ε2
+

X−1

ε
+ X0

)

, (A.18)

where Nt is defined in Eq. (3.26), and the coefficients X−2, X−1, and X0 are given

by:

X−2 =
3

2
,

X−1 = ln

(

ω1m
4
t

στ 2
2

)

,

X0 = 2 ln

(

τ2

m2
t

)

ln

(

σ

m2
t

)

− ln2

(

ω1

m2
t

)

− 2 Li2

(

1 +
ω1

τ2

)

+
π2

3
. (A.19)

The tensor integrals associated with B
(1),qq̄
3 (B

(1),gg
8,t ) also contain IR divergences.

Using the notation introduced in Eqs. (A.5) and (A.6), only the following tensor

coefficients of D1µ

B
(1),qq̄
3

(D1µ

B
(1),gg
8,t

):

∆IR(D
(1)
1 ) =

3

2

1

στ2

1

ε2
− 1

στ2

[

Λσ + Λτ2 +
ω1

τ2 + ω1
(Λτ2 − Λω1)

]

1

ε
,

∆IR(D
(2)
1 ) =

1

2

1

στ2

1

ε2
− 1

στ2

Λτ2

1

ε
, (A.20)

of D2µν

B
(1),qq̄
3

(D2µν

B
(1),gg
8,t

):

∆IR(D
(11)
2 ) = −3

2

1

στ2

1

ε2
+

1

στ2

[

− τ2

τ2 + ω1

+ Λσ + Λτ2 +
ω2

1

(τ2 + ω1)2
(Λτ2 − Λω1)

]

1

ε
,

∆IR(D
(12)
2 ) = −1

2

1

στ2

1

ε2
+

1

στ2
Λτ2

1

ε
,

∆IR(D
(22)
2 ) = −1

2

1

στ2

1

ε2
+

1

στ2
(−1 + Λτ2)

1

ε
, (A.21)
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and of D3µνρ

B
(1),qq̄
3

(D3µνρ

B
(1),gg
8,t

):

∆IR(D
(111)
3 ) =

3

2

1

στ2

1

ε2
+

1

2στ2

[

3τ2

τ2 + ω1

+
2τ2ω1

(τ2 + ω1)2
− 2Λσ − 2Λτ2

− 2ω2
1

(τ2 + ω1)3
(Λτ2 − Λω1)

]

1

ε
,

∆IR(D
(112)
3 ) =

1

2

1

στ2

1

ε2
− 1

στ2
Λτ2

1

ε
,

∆IR(D
(221)
3 ) =

1

2

1

στ2

1

ε2
+

1

στ2

(1 − Λτ2)
1

ε
,

∆IR(D
(222)
3 ) =

1

2

1

στ2

1

ε2
+

1

στ2

(

3

2
− Λτ2

)

1

ε
, (A.22)

are IR divergent.

We note that D0
B

(2),qq̄
3

as well as the corresponding tensor integrals are obtained

from D0
B

(1),qq̄
3

by exchanging q1 ↔ q2, while D0
B

(3),qq̄
3

(D0
B

(2),gg
8,t

) can be obtained from

D0
B

(1),qq̄
3

(D0
B

(1),gg
8,t

) by exchanging q1 ↔ q2 and p′t ↔ pt, i.e. by exchanging τ1 ↔ τ2

and ω1 ↔ ω2 in Eqs. (A.18)-(A.22). Finally, D0
B

(4),qq̄
3

is obtained from D0
B

(3),qq̄
3

by

exchanging q1 ↔ q2.

A.0.1.4 Box scalar integral D0
B

(1,2),gg
10,t

The scalar box integral appearing in diagram B
(1),gg
10,t , D0

(1),gg
B10,t

, can be parameter-

ized according to Eq. A.3 with:

N1 = k2 , N2 = (k + q1)
2 ,

N3 = (k + q1 − p′t)
2 − m2

t , N4 = (k + q1 + q2 − p′t)
2 − m2

t . (A.23)

The part of D0
B

(1),gg
10,t

which contributes to the virtual amplitude squared is given by:

D0
(1),gg
B10,t

=
i

16π2
Nt

(

1

τ2τ4

)(

X−2

ε2
+

X−1

ε
+ X0

)

, (A.24)

where the coefficients X−2, X−1, and X0 are given by:

X−2 =
1

2
,
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X−1 = ln

(

ω1

τ4

)

− ln

(

τ2

m2
t

)

,

X0 = Re

{

ln2

(

τ2

m2
t

)

+ ln2

(

τ4

m2
t

)

− ln2

(

ω1

m2
t

)

+
3

2
π2

+ 2 ln

(

τ2 + ω1

τ4

)

ln

(

τ4

τ2 + τ4 + ω1

)

+ 2 ln

(

τ4 + ω1

τ2

)

ln

(

τ2

τ2 + τ4 + ω1

)

− 2 Li2

(

τ2 + τ4 + ω1

τ4

)

− 2 Li2

(

τ2 + τ4 + ω1

τ2

)

− 2 Li2

(

(τ2 + ω1)(τ4 + ω1)

τ2τ4

)}

.

(A.25)

The tensor integrals associated with B
(1),gg
10,t also contain IR divergences. Using the

notation introduced in Eqs. (A.5) and (A.6), the only IR divergent tensor coefficients

of D1µ

B
(1),gg
10,t

:

∆IR(D
(1)
1 ) = −1

2

1

τ2τ4

1

ε2
+

1

τ2τ4(τ2 + ω1)
[(τ2 + ω1)Λτ4 + ω1 (Λτ2 − Λω1)]

1

ε
,

(A.26)

of D2µν

B
(1),gg
10,t

:

∆IR(D
(11)
2 ) =

1

2

1

τ2τ4

1

ε2
+

1

τ2τ4(τ2 + ω1)2

[

τ2(τ2 + ω1) − (τ2 + ω1)
2Λτ4 − ω2

1 (Λτ2 − Λω1)
] 1

ε
,

(A.27)

and of D3µνρ

B
(1),gg
10,t

:

∆IR(D
(111)
3 ) = −1

2

1

τ2τ4

1

ε2
− 1

2

1

τ2τ4(τ2 + ω1)3

[

−2ω2
1 (Λτ2 − Λω1) − 2(τ2 + ω1)

3Λτ4

+ 3τ2(τ2 + ω1)
2 + 2τ2ω1(τ2 + ω1)

] 1

ε
, (A.28)

are IR divergent.

D0
B

(2),gg
10,t

can be obtained from D0
B

(1),gg
10,t

by exchanging p′t ↔ pt, i.e. by exchanging

τ1 ↔ τ4, τ2 ↔ τ3, and ω1 ↔ ω2 in Eqs (A.24) and (A.28).
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A.0.2 Pentagon integrals

The scalar and tensor pentagon integrals originating from the generic pentagon

diagrams P qq̄
i and P gg

i,j in Figs. 3.8 and 3.12 are of the form:

E0
P

qq̄(gg)
i,(j)

, E1µ

P
qq̄(gg)
i,(j)

, E2µν

P
qq̄(gg)
i,(j)

, E3µνρ

P
qq̄(gg)
i,(j)

= µ4−d

∫

ddk

(2π)d

1, kµ, kµkν , kµkνkρ

N1N2N3N4N5

, (A.29)

where

N1 = (k2 − m2
0) , N2 = (k + p1)

2 − m2
1 ,

N3 = (k + p1 + p2)
2 − m2

2 , N4 = (k + p1 + p2 + p3)
2 − m2

3 ,

N5 = (k + p1 + p2 + p3 + p4)
2 − m2

4 , (A.30)

p1, p2, p3, p4, and p5 = −p1 − p2 − p3 − p4 are the external (incoming) momenta

connected to the pentagon topology, while m0, m1, m2, m3, and m4 are the masses

of the propagators in the pentagon loop.

The scalar pentagon integrals are evaluated as a linear combination of five

scalar box integrals, using the technique originally proposed in Ref. [52, 53] that

we generalize here to the case of several massive particles. In particular, we use:

E0Pi,j
= −1

2

5
∑

k=1

ckD0
(k)
Pi,j

, (A.31)

where each scalar box integral D0
(k)
Pi,j

can be obtained from the scalar pentagon

integral E0Pi,j
in Eq. (A.29) by dropping one of the internal propagators. The

coefficients ck are given by:

ck =

5
∑

l=1

S−1
kl , (A.32)

where Skl is the symmetric matrix:

Skl =
1

2

(

M2
k + M2

l − p2
kl

)

, (A.33)

built out of the internal propagator masses Mk and Ml and the linear combination

of external momenta pµ
kl = pµ

k + . . . + pµ
l−1 (k, l = 1, . . . , 5). A thorough explanation
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of this method is given in Section A.0.2.1 and in Refs. [52, 53], to which we refer for

more details.

We write the tensor pentagon integrals as a linear combination of the linearly

independent tensor structures built of the external momenta pµ
1 , pµ

2 , pµ
3 , and pµ

4 ,

which in d = 4 constitute a complete basis. Our notation for the pentagon tensor

integrals is as follows:

E1µ = E
(1)
1 pµ

1 + E
(2)
1 pµ

2 + E
(3)
1 pµ

3 + E
(4)
1 pµ

4 ,

E2µν = E
(11)
2 pµ

1p
ν
1 + E

(22)
2 pµ

2p
ν
2 + E

(33)
2 pµ

3p
ν
3 + E

(44)
2 pµ

4p
ν
4

+ E
(12)
2 (pµ

1p
ν
2 + pν

1p
µ
2 ) + E

(13)
2 (pµ

1p
ν
3 + pν

1p
µ
3 ) + E

(14)
2 (pµ

1p
ν
4 + pν

1p
µ
4)

+ E
(23)
2 (pµ

2p
ν
3 + pν

2p
µ
3 ) + E

(24)
2 (pµ

2p
ν
4 + pν

2p
µ
4 ) + E

(34)
2 (pµ

3p
ν
4 + pν

3p
µ
4) ,

E3µνρ = E
(111)
3 pµ

1p
ν
1p

ρ
1 + E

(222)
3 pµ

2p
ν
2p

ρ
2 + E

(333)
3 pµ

3p
ν
3p

ρ
3 + E

(444)
3 pµ

4p
ν
4p

ρ
4

+ E
(112)
3 (pµ

1p
ν
1p

ρ
2 + perm) + E

(113)
3 (pµ

1p
ν
1p

ρ
3 + perm) + E

(114)
3 (pµ

1p
ν
1p

ρ
4 + perm)

+ E
(221)
3 (pµ

2p
ν
2p

ρ
1 + perm) + E

(223)
3 (pµ

2p
ν
2p

ρ
3 + perm) + E

(224)
3 (pµ

2p
ν
2p

ρ
4 + perm)

+ E
(331)
3 (pµ

3p
ν
3p

ρ
1 + perm) + E

(332)
3 (pµ

3p
ν
3p

ρ
2 + perm) + E

(334)
3 (pµ

3p
ν
3p

ρ
4 + perm)

+ E
(441)
3 (pµ

4p
ν
4p

ρ
1 + perm) + E

(442)
3 (pµ

4p
ν
4p

ρ
2 + perm) + E

(443)
3 (pµ

4p
ν
4p

ρ
4 + perm)

+ E
(123)
3 (pµ

1p
ν
2p

ρ
3 + perm) + E

(124)
3 (pµ

1p
ν
2p

ρ
4 + perm) + E

(134)
3 (pµ

1p
ν
3p

ρ
4 + perm)

+ E
(234)
3 (pµ

2p
ν
3p

ρ
4 + perm) .

(A.34)

The calculation of qq̄ → tt̄h involves two pentagon structures (see Fig. 3.8) which

are a subset of the six pentagon structures of gg → tt̄h illustrated in Fig. 3.12. As

in the case of the box integrals, we present them together and note when an integral

appears in both calculations. For each of the pentagon structures, we will give in

the following the IR pole parts of the corresponding scalar integrals, as well as the

coefficient ck (in terms of the Skl matrix) and the IR singular box scalar integrals

D0
(k),qq̄(gg)
Pi,(j)

out of which they can be calculated. We will moreover list the IR pole

parts of the corresponding tensor integral coefficients, since they may be of interest
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in checking the IR structure of the virtual cross section. We will write the pole part

of each tensor integral coefficient as

E
(j)
i |IR−pole =

i

16π2
Nt∆IR(E

(j)
i ) ,

E
(jk)
i |IR−pole =

i

16π2
Nt∆IR(E

(jk)
i ) ,

E
(jkl)
i |IR−pole =

i

16π2
Nt∆IR(E

(jkl)
i ) , (A.35)

where Nt is defined in Eq. (3.26), and give for each pentagon integral the non zero

∆IR(E
(j)
i ), ∆IR(E

(jk)
i ), and ∆IR(E

(jkl)
i ) coefficients.

As in Section A.0.1 we express our results in terms of the kinematic invariants

σ, τi, ωi of Eqs. (3.48) and (3.36), and βtt̄ of Eq. (3.37).

A.0.2.1 Pentagon scalar integral E0P1,t

The pentagon scalar integrals arising from diagrams P qq̄
1 and P gg

1,t , E0P qq̄
1

and

E0P gg
1,t

, coincide and can be parameterized according to Eq. (A.29) with:

N1 = k2 , N2 = (k + q1)
2 , N3 = (k + q1 + q2)

2 ,

N4 = (k + q1 + q2 − p′t)
2 − m2

t , N5 = (k + q1 + q2 − p′t − ph)
2 − m2

t . (A.36)

We note that the pentagon scalar integral originating from diagram P qq̄
2 , E0P qq̄

2
, can

be obtained from E0P qq̄
1

by exchanging q1 ↔ q2. In addition, to simplify the notation,

we only present the results for the case P gg
1,t below; however, the results for P qq̄

1 are

identical.

We calculate these integrals following the method introduced by the authors of

Ref. [52]. To make contact with their notation, we denote by ki the external momenta

(such that k2
i =m2

i ), by Mi the internal masses, by pi the sum of the first i external

momenta, pµ
i =
∑i

j=1 kµ
j , by pij the difference pµ

ij =pµ
j−1−pµ

i−1 = kµ
i +kµ

i+1 + · · ·+kµ
j−1

(for i < j), and finally by s̄ij the invariant masses s̄ij =(ki + kj)
2.
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k1

k2 k3

k4

k5a1

a2

a3

a4

a5

Figure A.1. Topology of the pentagon scalar integral.

The topology of the generic pentagon scalar integral is illustrated in Fig. A.1,

which can be specified to our case by identifying:

k1 −→ −q1 (incoming q)

k2 −→ −q2 (incoming q̄)

k3 −→ p′t (outgoing t̄) (A.37)

k4 −→ ph (outgoing h)

k5 −→ pt (outgoing t) .

Using the standard Feynman parameterization technique, the pentagon integral

in Eq.(A.29) can be written as:

E0P gg
1,t

= − i

16π2
(4πµ2)εΓ(3 + ε)

∫ 1

0

Π5
k=1dakδ(1 − Σ5

k=1ak)

[DP gg
1,t

(ak)]3+ε
, (A.38)

where the denominator DP gg
1,t

(ak) is:

DP gg
1,t

(ak) =
5
∑

k,l=1

Sklakal − iη , (A.39)

and the symmetric matrix Skl is given by:

Skl =
1

2
(M2

k + M2
l − p2

kl) . (A.40)
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For our particular process, the matrix Skl has the following explicit form:

S =
1

2













0 0 −s̄12 (m2
t − s̄45) 0

0 0 0 (m2
t − s̄23) (m2

t − s̄15)
−s̄12 0 0 0 (m2

t − s̄34)
(m2

t − s̄45) (m2
t − s̄23) 0 2m2

t (2m2
t − M2

h)
0 (m2

t − s̄15) (m2
t − s̄34) (2m2

t − M2
h) 2m2

t













.

(A.41)

Following Ref. [52], E0p1 can then be written as the linear combination of five scalar

box integrals D0
(k)
p1 :

E0P gg
1,t

= −1

2

5
∑

k=1

ckD0
(k)

P gg
1,t

, (A.42)

where each D0
(k)

P gg
1,t

scalar box integral can be obtained from the scalar pentagon

integral E0p1 of Eq. (A.38) in the limit where one of the Feynman parameters ak of

the internal propagators goes to zero (i.e. D0
(k)
p1 is obtained when ak → 0). The five

box scalar integrals we need are presented in the following. The coefficients ck in

Eq. (A.42) are given by:

ck =
5
∑

l=1

S−1
kl . (A.43)

Using Eq. (A.41) we can easily obtain them in terms of mt, Mh, and the kinematic

invariants s̄kl.

The final result for the pentagon scalar integral E0p1 can be written as:

E0p1 =
i

16π2
Nt

[

X−2

ε2
+

X−1

ε
+ X0

]

, (A.44)

where Nt is given in Eq. (3.26), while X−2, X−1 and X0 are obtained using

Eqs. (A.42)-(A.41), and the results below for the D0
(1−5)
P1,t

scalar integrals. The

expression for X0 is too lengthy to be given explicitly in this appendix, while X−2

and X−1 have the following compact form:

X−2 =
1

2σ

(

− 1

ω1τ1

− 1

ω2τ2

+
2

τ1τ2

)

, (A.45)

X−1 =
1

στ1τ2
(−Λσ + Λω1 + Λω2 − Λτ1 − Λτ2) +

1

στ2ω2
(Λτ2 − Λτ1 + Λω2) +

+
1

στ1ω1
(Λτ1 − Λτ2 + Λω1) .
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The tensor integrals associated with P gg
1,t contain IR divergences. Using the notation

introduce in Eqs. (A.34) and (A.35), only the following coefficients of E1µ
P gg

1,t
:

∆IR(E
(1)
1 ) =

1

2στ2

(

1

ω2

− 2

τ1

)

1

ε2
+

1

σ

[

1

τ1τ2

(Λσ + Λτ1 + Λτ2 − Λω1 − Λω2)

+
1

ω2τ2
(Λτ1 − Λτ2 − Λω2)

]

1

ε
,

∆IR(E
(2)
1 ) =

1

2στ2ω2

1

ε2
+

1

στ2ω2

(Λτ1 − Λτ2 − Λω2)
1

ε
,

(A.46)

of E2µν
P gg

1,t
:

∆IR(E
(11)
2 ) = − 1

2στ2

(

1

ω2
− 2

τ1

)

1

ε2
+

1

σ

[

1

τ1τ2
(Λω2 − Λτ1 − Λσ) +

1

τ2ω2
(Λτ2 + Λω2 − Λτ1)

+
ω1

τ1τ2(τ2 + ω1)
(Λω1 − Λτ2)

]

1

ε
,

∆IR(E
(12)
2 ) = − 1

2στ2ω2

1

ε2
− 1

στ2ω2
(Λτ1 − Λτ2 − Λω2)

1

ε
,

∆IR(E
(22)
2 ) = − 1

2στ2ω2

1

ε2
+

1

στ2ω2

[

Λτ2 +
τ1

(τ2 + ω1)
(Λω2 − Λτ1)

]

1

ε
,

(A.47)

and of E3µνρ
P gg

1,t
:

∆IR(E
(111)
3 ) =

1

2στ2

(

1

ω2
− 2

τ1

)

1

ε2
−
[

1

τ1τ2
(Λω2 − Λτ1 − Λσ) +

1

τ2ω2
(Λτ2 + Λω2 − Λτ1)

+
ω2

1

τ1τ2(τ2 + ω1)2
(Λω1 − Λτ2) +

1

τ1(τ2 + ω1)

]

1

ε
,

∆IR(E
(112)
3 ) =

1

2στ2ω2

1

ε2
+

1

στ2ω2

(Λτ1 − Λτ2 − Λω2)
1

ε
,

∆IR(E
(221)
3 ) =

1

2στ2ω2

1

ε2
− 1

στ2ω2

[

Λτ2 +
τ1

(τ2 + ω1)
(Λω2 − Λτ1)

]

1

ε
,

∆IR(E
(222)
3 ) =

1

2στ2ω2

1

ε2
− 1

σ

[

1

τ2ω2
Λτ2 +

τ 2
1

τ2ω2(τ1 + ω2)2
(Λω2 − Λτ1) −

1

τ2(τ1 + ω2)

]

1

ε
,

(A.48)

are IR divergent.
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We present in the following the IR singular box scalar integrals D0
(k)

P gg
1,t

, which

are used in Eq. (A.31) to calculate E0P gg
1,t

. D0
(2)

P gg
1,t

is finite and we will not discuss it

further.

Box scalar integral D0
(1)
P1,t

D0
(1)
P1,t

can be parameterized according to Eq. (A.3) with:

N1 = k2 , N2 = (k + q2)
2 ,

N3 = (k + q2 − p′t)
2 − m2

t , N4 = (k + q2 − p′t − ph)
2 − m2

t . (A.49)

and can be obtained from D0
B

(1)
7,t

in Section A.0.1.2 by exchanging q1 ↔ q2 and

pt ↔ p′t, i.e. by exchanging τ1 ↔ τ2, and ω1 ↔ ω2.

Box scalar integral D0
(3)
P1,t

D0
(3)
P1,t

can be parameterized according to Eq. (A.3) with:

N1 = k2 , N2 = (k + q1)
2 ,

N3 = (k + q1 − pt)
2 − m2

t , N4 = (k + q1 − pt − ph)
2 − m2

t . (A.50)

and is equal to D0
B

(1)
7,t

in Section A.0.1.2.

Box scalar integral D0
(4)
P1,t

D0
(4)
P1,t

can be parameterized according to Eq. (A.3) with:

N1 = k2 , N2 = (k + q2)
2 ,

N3 = (k + q1 + q2)
2 , N4 = (k + q1 + q2 − pt)

2 − m2
t . (A.51)

and is equal to D0
(2)
B8,t

in Section A.0.1.3.

Box scalar integral D0
(5)
P1,t

D0
(5)
P1,t

can be parameterized according to Eq. (A.3) with:

N1 = k2 , N2 = (k + q1)
2 ,

N3 = (k + q1 + q2)
2 , N4 = (k + q1 + q2 − p′t)

2 − m2
t , (A.52)

and coincides with D0
B

(1)
8,t

in Section A.0.1.3.
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A.0.2.2 Pentagon scalar integral E0P2,t

The pentagon scalar integral arising from diagram P2,t can be parameterized

according to Eq. (A.29) with:

N1 = k2 , N2 = (k − p′t)
2 − m2

t , N3 = (k − p′t + q2)
2 − m2

t ,

N4 = (k − p′t + q1 + q2)
2 − m2

t , N5 = (k − p′t + q1 + q2 − ph)
2 − m2

t .(A.53)

The ck (k=1, . . . , 5) coefficients of Eq. (A.31) are obtained, according to Eq. (A.32),

as:

ck =

5
∑

l=1

[S(P2,t)]
−1
kl , (A.54)

where

S(P2,t) =
1

2













0 0 τ2 −ω1 0
0 2m2

t 2m2
t 2m2

t − σ a1

τ2 2m2
t 2m2

t 2m2
t a2

−ω1 2m2
t − σ 2m2

t 2m2
t 2m2

t − M2
h

0 a1 a2 2m2
t − M2

h 2m2
t













, (A.55)

and we have defined

a1 = 2m2
t − (pt + p′t)

2 = 2m2
t − σ + ω1 + ω2 − M2

h ,

a2 = 2m2
t − (q1 − ph)

2 = 2m2
t + ω1 − τ1 + τ2 − M2

h . (A.56)

The part of E0P2,t
that contributes to the virtual amplitude squared can be written

as:

E0P2,t
=

i

16π2
Nt

[

X−1

ε
+ X0

]

, (A.57)

where X−1 and X0 are obtained using Eqs. (A.31), (A.54)-(A.56), and the results

for the D0
(k)
P2,t

integrals presented in the following. The expression for X−1 has the

following form:

X−1 =
1

τ2ω1(σ − ω1 − ω2 + M2
h)

1

βtt̄

ln

(

1 + βtt̄

1 − βtt̄

)

. (A.58)

All tensor pentagon integrals associated with P2,t are IR finite.
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We present in the following the IR singular box scalar integrals D0
(k)
P2,t

which are

used in Eq. (A.31) to calculate E0P2,t
. D0

(1)
P2,t

, D0
(2)
P2,t

, and D0
(5)
P2,t

are finite and we

will not discuss them further.

Box scalar integral D0
(3)
P2,t

D0
(3)
P2,t

can be parameterized according to Eq. (A.3) with:

N1 = k2 , N2 = (k − p′t)
2 − m2

t ,

N3 = (k − p′t + q1 + q2)
2 − m2

t , N4 = (k + pt)
2 − m2

t , (A.59)

and is equal to D0
B

(1)
2,s

in Section A.0.1.1.

Box scalar integral D0
(4)
P2,t

.

D0
(4)
P2,t

can be parameterized according to Eq. (A.3) with:

N1 = k2 , N2 = (k − p′t)
2 − m2

t ,

N3 = (k − p′t + q2)
2 − m2

t , N4 = (k + pt)
2 − m2

t , (A.60)

and can be written as

D0
(4)
P2,t

=
i

16π2
Nt

(

X−1

ε
+ X0

)

, (A.61)

where the pole part X−1 is given by:

X−1 =
1

τ2(σ − ω1 − ω2 + M2
h)

1

βtt̄

ln

(

1 + βtt̄

1 − βtt̄

)

, (A.62)

while the finite part X0 can be found from Eq. (2.9) of Ref. [105] with the

identifications:

m2
0 = m2

1 = m2
4 → m2

t , (A.63)

s → (pt + p′t)
2 = σ − ω1 − ω2 + M2

h ,

t → (q2 − p′t)
2 = m2

t − τ2 .
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A.0.2.3 Pentagon scalar integral E0P3,t

The pentagon scalar integral arising from diagram P3,t can be parameterized

according to Eq. (A.29) with:

N1 = k2 , N2 = (k − p′t)
2 − m2

t , N3 = (k − p′t + q2)
2 − m2

t ,

N4 = (k − p′t + q2 − ph)
2 − m2

t , N5 = (k + pt)
2 − m2

t . (A.64)

The ck (k=1, . . . , 5) coefficients of Eq. (A.31) are obtained, according to Eq. (A.32),

as:

ck =

5
∑

l=1

[S(P3,t)]
−1
kl , (A.65)

where

S(P3,t) =
1

2













0 0 τ2 τ1 0
0 2m2

t 2m2
t a3 a1

τ2 2m2
t 2m2

t 2m2
t − M2

h a2

τ1 a3 2m2
t − M2

h 2m2
t 2m2

t

0 a1 a2 2m2
t 2m2

t













, (A.66)

and we have defined

a3 = 2m2
t − (q2 − ph)

2 = 2m2
t − M2

h + ω2 + τ1 − τ2 , (A.67)

while a1 and a2 are given in Eq. (A.56).

The part of E0P3,t
that contributes to the virtual amplitude squared can be

written as:

E0P3,t
=

i

16π2
Nt

[

X−1

ε
+ X0

]

, (A.68)

where X−1 and X0 are obtained using Eqs. (A.31), (A.65)-(A.67), and the results for

D0
(k)
P3,t

given in the following. The expression for X−1 has the following form:

X−1 = − 1

τ1τ2(σ − ω1 − ω2 + M2
h)

1

βtt̄

ln

(

1 + βtt̄

1 − βtt̄

)

. (A.69)

All tensor pentagon integrals associated with P3,t are IR finite.

182



We present in the following the box scalar integrals D0
(k)
P3,t

, which are used in

Eq. (A.31) to calculate E0P3,t
. D0

(1)
P3,t

, D0
(2)
P3,t

, and D0
(5)
P3,t

are finite and we will not

discuss them further.

Box scalar integral D0
(3)
P3,t

D0
(3)
P3,t

can be parameterized according to Eq. (A.3) with:

N1 = k2 , N2 = (k − p′t)
2 − m2

t ,

N3 = (k − p′t + q2 − ph)
2 − m2

t , N4 = (k + pt)
2 − m2

t , (A.70)

and can be written as

D0
(3)
P3,t

=
i

16π2
Nt

(

X−1

ε
+ X0

)

, (A.71)

where the pole part X−1 is:

X−1 =
1

τ1(σ − ω1 − ω2 + M2
h)

1

βtt̄

ln

(

1 + βtt̄

1 − βtt̄

)

, (A.72)

while the finite part X0 can be found from Eq. (2.9) of Ref. [105] with the

identifications:

m2
0 = m2

1 = m2
4 → m2

t ,

s → (pt + p′t)
2 = σ + m2

h − ω1 − ω2 ,

t → (q1 − pt)
2 = m2

t − τ1 . (A.73)

Box scalar integral D0
(4)
P3,t

.

D0
(4)
P3,t

can be parameterized according to Eq. (A.3) with:

N1 = k2 , N2 = (k − p′t)
2 − m2

t ,

N3 = (k − p′t + q2)
2 − m2

t , N4 = (k + pt)
2 − m2

t , (A.74)

and is equal to D0
(4)
P2,t

in Section A.0.2.2.
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A.0.2.4 Pentagon scalar integral E0P4,t

The pentagon scalar and tensor integrals arising from diagram P4,t can be found

from the corresponding integrals for diagram P2,t by exchanging q1 ↔ q2 and pt ↔ p′t,

i.e. by exchanging τ1 ↔ τ2, τ3 ↔ τ4, and ω1 ↔ ω2.

A.0.2.5 Pentagon scalar integral E0P5,t

The pentagon scalar integral arising from diagram P5,t can be parameterized

according to Eq. (A.29) with:

N1 = k2 , N2 = (k + q1)
2 , N3 = (k + q1 − p′t)

2 − m2
t ,

N4 = (k + q1 + q2 − p′t)
2 − m2

t , N5 = (k + q1 + q2 − p′t − ph)
2 − m2

t . (A.75)

The ck (k=1, . . . , 5) coefficients of Eq. (A.31) are obtained, according to Eq. (A.32),

as:

ck =
5
∑

l=1

[S(P5,t)]
−1
kl , (A.76)

where

S(P5,t) =
1

2













0 0 τ4 −ω1 0
0 0 0 τ2 τ1

τ4 0 2m2
t 2m2

t a3

−ω1 τ2 2m2
t 2m2

t 2m2
t − M2

h

0 τ1 a3 2m2
t − M2

h 2m2
t













, (A.77)

with a3 as defined in Eq. (A.67).

The part of E0P5,t
that contributes to the virtual amplitude squared can be

written as:

E0P5,t
=

i

16π2
Nt

[

X−2

ε2
+

X−1

ε
+ X0

]

, (A.78)

where X−2, X−1 and X0 are obtained using Eqs. (A.31), (A.76), (A.77), and the

results for D0
(k)
P5,t

given below. The expressions for X−2 and X−1 have the following

form:

X−2 =
1

2τ1τ4

(

1

ω1

− 1

τ2

)

,

X−1 =
1

τ1τ4

[

1

ω1
(Λτ2 − Λτ1 − Λω1) +

1

τ2
(Λτ2 + Λτ4 − Λω1)

]

. (A.79)
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The tensor integrals associated with P5,t also contain IR divergences. Only the

following tensor coefficients of E1µ
P5,t

:

∆IR(E
(1)
1 ) =

1

2τ1τ2τ4

1

ε2
+

1

τ1τ2τ4
(Λω1 − Λτ2 − Λτ4)

1

ε
,

(A.80)

of E2µν
P5,t

:

∆IR(E
(11)
2 ) = − 1

2τ1τ2τ4

1

ε2
+

1

τ1τ2τ4(τ2 + ω1)
[(τ2 + ω1)Λτ4 − ω1 (Λω1 − Λτ2)]

1

ε
,

(A.81)

and of E3µνρ
P5,t

:

∆IR(E
(111)
3 ) =

1

2τ1τ2τ4

1

ε2
− 1

τ1τ2τ4(τ2 + ω1)2

[

−τ2(τ2 + ω1) + (τ2 + ω1)
2Λτ4(A.82)

+ω2
1 (Λτ2 − Λω1)

] 1

ε

(A.83)

are IR divergent.

We present in the following the IR singular box scalar integrals D0
(k)
P5,t

, which are

used in Eq. (A.31) to calculate E0P5,t
. D0

(1)
P5,t

and D0
(2)
P5,t

are finite and we will not

discuss them further.

Box scalar integral D0
(3)
P5,t

D0
(3)
P5,t

can be parameterized according to Eq. (A.3) with:

N1 = k2 , , N2 = (k + q1)
2 ,

N3 = (k + q1 + q2 − p′t)
2 − m2

t , N4 = (k + pt)
2 − m2

t , (A.84)

and coincides with D0
(3)
P1,t

in Section A.0.2.1, after shifting k → −k − q1.

Box scalar integral D0
(4)
P5,t

.
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D0
(4)
P5,t

can be parameterized according to Eq. (A.3) with:

N1 = k2 , N2 = (k + q1)
2 ,

N3 = (k + q1 − p′t)
2 − m2

t , N4 = (k + pt)
2 − m2

t . (A.85)

The part of D0
(4)
P5,t

which contributes to the virtual amplitude squared is given by:

D0
(4)
P5,t

=
i

16π2
Nt

(

1

τ1τ4

)(

X−2

ε2
+

X−1

ε
+ X0

)

, (A.86)

where the coefficients X−2, X−1, and X0 are given by:

X−2 = 1 ,

X−1 = − ln

(

τ1

m2
t

)

− ln

(

τ4

m2
t

)

,

X0 = Re

{

ln2

(

τ1

m2
t

)

+ ln2

(

τ4

m2
t

)

− ln2

(

τ4

τ1

)

− 2

3
π2 + 2Li2

(

1

z+

)

+ 2Li2

(

1

z−

)}

,

(A.87)

with

z± =
1

2
(1 ± ∆) , ∆ =

√

1 − 4m2
t

2m2
t − a3

, (A.88)

and a3 defined in Eq. (A.67).

Box integral D0
(5)
P5,t

.

D0
(5)
P5,t

can be parameterized according to Eq. (A.3) with:

N1 = k2 , N2 = (k + q1)
2 ,

N3 = (k + q1 − p′t)
2 − m2

t , N4 = (k + q1 + q2 − p′t)
2 − m2

t , (A.89)

and is equal to D0
B

(1)
10,t

in Section A.0.1.4.
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A.0.2.6 Pentagon scalar integral E0P6,t

The pentagon scalar integral arising from diagram P6,t can be parameterized

according to Eq. (A.29) with:

N1 = k2 , N2 = (k + q1)
2 , N3 = (k + q1 − p′t)

2 − m2
t ,

N4 = (k + q1 − p′t − ph)
2 − m2

t , N5 = (k + q1 − p′t − ph + q2)
2 − m2

t . (A.90)

We note that E0P6,t
can be obtained from E0P5,t

by shifting k → −k − q1 and

exchanging pt ↔ p′t, or equivalently by exchanging τ1 ↔ τ4, τ2 ↔ τ3, and ω1 ↔ ω2.

The same applies to the tensor pentagon integrals E1µ
P6,t

, E2µν
P6,t

, and E3µνρ
P6,t

.
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APPENDIX B

TENSOR INTEGRAL REDUCTIONS

In this Appendix, we give a simple example of the reduction of a tensor integral

to a linear combination of scalar integrals. We will also make explicit the dependence

of the tensor coefficients on the inverse of the Gram determinant. For more details,

we refer the reader to the original works in Refs. [64, 65].

For simplicity, we consider a three-point function, e.g. the vertex corrections

encountered in qq̄, gg → tt̄h. We write the scalar integral and the first-rank and

second-rank tensor integrals as:

C0, C
µ
1 , Cµν

2 = µ4−d

∫

ddk

(2π)d

1, kµ, kµkν

N1N2N3
, (B.1)

where the denominators are given by:

N1 = (k2 − m2) , N2 = (k + p1)
2 − m2 , N3 = (k + p1 + p2)

2 − m2 , (B.2)

where p1 and p2 are two of the external momenta connected with the three-point

function and m is the mass which, we assume for simplicity, is the same for all

denominators.

We can write the tensor integrals, Cµ
1 and Cµν

2 , as linear combinations of the

linearly-independent tensor structures built of the independent external momenta

pµ
1 , p

µ
2 plus the metric tensor, gµν:

Cµ
1 = C11 pµ

1 + C12 pµ
2 (B.3)

and

Cµν
2 = pµ

1p
ν
1 C21 + pµ

2p
ν
2 C22 + (pµ

1p
ν
2 + pν

1p
µ
2) C23 + gµν C24 . (B.4)
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where the Cij are the tensor coefficients.

First, let us consider the rank-one tensor integral. Replacing Cµ
1 in Eq. (B.1) with

the expression in Eq. (B.3) and saturating each side with the external momenta, we

can construct the following system of equations:

C11 p2
1 + C12 (p1 · p2) = µ4−d

∫

ddk

(2π)d

(p1 · k)

N1N2N3

C11 (p1 · p2) + C12 p2
2 = µ4−d

∫

ddk

(2π)d

(p2 · k)

N1N2N3
, (B.5)

where we can write:

(p1 · k) =
1

2

[

(k + p1)
2 − m2 − (k2 − m2) − p2

1

]

=
1

2

[

N2 − N1 − p2
1

]

(B.6)

(p2 · k) =
1

2

[

(k + p1 + p2)
2 − m2 − ((k + p1)

2 − m2) − p2
1

]

=
1

2

[

N3 − N2 − (p2
2 + 2p1 · p2)

]

. (B.7)

Using Eqs. (B.6) and (B.7), we can write the system of equations in Eq. (B.5) as a

matrix equation:

X

(

C11

C12

)

=

(

R1

R2

)

(B.8)

where we have defined:

R1 =
1

2

(

B0(1, 3) − B0(2, 3) − p2
1 C0

)

(B.9)

R2 =
1

2

(

B0(1, 2) − B0(1, 3) − (p2
2 + 2p1 · p2) C0

)

, (B.10)

with the two-point scalar integral, B0(i, j) given by:

B0(i, j) = µ4−d

∫

ddk

(2π)d

1

NiNj
, (B.11)

and the matrix X is defined as:

X =

(

p2
1 (p1 · p2)

(p1 · p2) p2
2

)

. (B.12)

189



Then, solving for the C11, C12 coefficients in Eq. (B.8), we find:

(

C11

C12

)

= X−1

(

R1

R2

)

. (B.13)

With the inverse of the matrix given by:

X−1 =
1

|X|

(

p2
2 −(p1 · p2)

−(p1 · p2) p2
1

)

(B.14)

Hence, we see the explicit dependence of the tensor coefficients C11, C12 on the inverse

of the Gram determinant, |X|, which is defined to be:

|X| = p2
1 p2

2 − (p1 · p2)
2 . (B.15)

Next, we consider the rank-two tensor integral Cµν
2 . Using Eq. (B.4) in Eq. (B.1)

and saturating both sides with the momenta pµ
1 , pµ

2 and the metric tensor gµν, we

can solve for the coefficients using the same procedure outlined above. In this case,

we arrive at two matrix equations:

(

C21

C23

)

= X−1

(

R3

R5

)

(B.16)

and:
(

C22

C23

)

= X−1

(

R4

R6

)

, (B.17)

along with an independent expression for C24:

C24 =
1

4
+

1

2
m2 C0 +

1

4

(

B0(2, 3) + p2
1 C11 + (p2

2 + 2p1 · p2) C12

)

. (B.18)

The inverse matrix X−1 is that given in Eq. (B.14) and we have defined:

R3 =
1

2

(

p2
1 C11 + B1(1, 3) + B0(2, 3)

)

− C24 (B.19)

R4 =
1

2

(

p2
1 C12 + B1(1, 3) − B1(2, 3)

)

(B.20)

R5 =
1

2

(

(p2
2 + 2p1 · p2) C11 + B1(1, 2) − B1(1, 3)

)

(B.21)

R6 =
1

2

(

(p2
2 + 2p1 · p2) C12 − B1(1, 3)

)

− C24 , (B.22)
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where B1(i, j) is the tensor coefficient defined through the two-point tensor integral,

i.e.:

Bµ
1 = µ4−d

∫

ddk

(2π)d

kµ

NiNj
= pµ

j B1(i, j) . (B.23)

From Eqs. (B.16) and (B.17), it appears that the Cij coefficients have the same

dependence on the inverse Gram determinant as the rank-one tensor coefficients Ci.

However, given the fact that the latter carry an implicit dependence on |X|−1, we

actually see that the Cij coefficients depend on two powers of the inverse Gram

determinant. In fact, a general feature of this reduction method is that higher-rank

coefficients depend on higher powers of the inverse Gram determinant.

Finally, the reduction technique outlined above is also applicable to box and

pentagon tensor integrals. However, as one can imagine, the situation becomes more

complicated due to the additional momenta connected to the box and pentagon

topologies.
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APPENDIX C

PHASE SPACE INTEGRALS FOR THE

EMISSION OF A SOFT GLUON IN THE

TWO-CUTOFF PSS METHOD.

In this Appendix we collect the phase space integrals for a final state soft gluon

that are used in calculating the results reported in Eq. (3.66). We parameterize the

soft gluon d-momentum in the qq̄ (gg) rest frame as:

k = Eg(1, . . . , sin θ1 sin θ2, sin θ1 cos θ2, cos θ1) , (C.1)

such that the phase space of the soft gluon in d=4 − 2ε dimensions can be written

as:

d(PSg)soft =
Γ(1 − ε)

Γ(1 − 2ε)

πε

(2π)3

∫ δs
√

s/2

0

dEgE
1−2ε
g ×

∫ π

0

dθ1 sin1−2ε θ1

∫ π

0

dθ2 sin−2ε θ2 . (C.2)

Then, all the integrals we need are of the form:

I(k,l)
n =

∫ π

0

dθ1 sind−3 θ1

∫ π

0

dθ2 sind−4 θ2
(a + b cos θ1)

−k

(A + B cos θ1 + C sin θ1 cos θ2)
l

. (C.3)

In particular we need the following four cases. When A2 6= B2 + C2, and b = −a, we

use (dropping terms of order O ((d − 4)2)):

I(1,1)
n =

π

a(A + B)

{

2

d − 4
+ ln

[

(A + B)2

A2 − B2 − C2

]

(C.4)

+
1

2
(d − 4)

[

ln2

(

A −
√

B2 + C2

A + B

)

− 1

2
ln2

(

A +
√

B2 + C2

A −
√

B2 + C2

)

+ 2 Li2

(

−B +
√

B2 + C2

A −
√

B2 + C2

)

− 2 Li2

(

B −
√

B2 + C2

A + B

)]}

,
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while when b 6= −a we use:

I(0,1)
n =

π√
B2 + C2

{

ln

(

A +
√

B2 + C2

A −
√

B2 + C2

)

(C.5)

−(d − 4)

[

Li2

(

2
√

B2 + C2

A +
√

B2 + C2

)

+
1

4
ln2

(

A +
√

B2 + C2

A −
√

B2 + C2

)]}

,

I(0,2)
n =

2π

A2 − B2 − C2

[

1 − 1

2
(d − 4)

A√
B2 + C2

ln

(

A +
√

B2 + C2

A −
√

B2 + C2

)]

. (C.6)

Additionally, when A2 = B2 + C2, and b = −a, we have:

I(1,1)
n = 2π

1

aA

1

d − 4

(

A + B

2A

)d/2−3 [

1 +
1

4
(d − 4)2Li2

(

A − B

2A

)]

. (C.7)

Finally, all the integrals we need are the following four:

∫

d(PSg)soft
(q1 ·q2)

(q1 ·k)(q2 ·k)
=

1

(4π)2
Nt 2

[

1

ε2
− 2

ε
ln(δs) −

1

ε
Λσ

−π2

3
+

1

2

(

Λ2
σ + 4Λσ ln(δs) + 4 ln2(δs)

)

]

,

∫

d(PSg)soft
(q1 ·pt)

(q1 ·k)(pt ·k)
=

1

(4π)2
Nt

[

1

ε2
− 2

ε
Λτ1 −

2

ε
ln(δs) −

π2

3

−1

2
Λ2

σ + 2Λτ1Λσ + 2 ln2(δs) + 4Λτ1 ln(δs) + F (q1, pt)

]

,

∫

d(PSg)soft
(pt ·p′t)

(pt ·k)(p′t ·k)
=

1

(4π)2
Nt

(

s̄tt̄ − 2m2
t

s̄tt̄

)[(

−2

ε
+ 2Λσ + 4 ln(δs)

)

1

βtt̄

Λtt̄

− 1

βtt̄

Λ2
tt̄ −

4

βtt̄

Li2

(

2βtt̄

1 + βtt̄

)]

,

∫

d(PSg)soft
p2

t

(pt ·k)2
=

1

(4π)2
Nt

[

−2

ε
+ 2Λσ + 4 ln(δs) − 2

1

βtt̄

Λtt̄

]

, (C.8)

where s̄tt̄ is given in Eq. (3.47), while βtt̄ and Λtt̄ are defined in Eq. (3.37). Moreover

we have denoted by F (pi, pf) the function:

F (pi, pf) = ln2

(

1 − βf

1 − βf cos θif

)

− 1

2
ln2

(

1 + βf

1 − βf

)

+2Li2

(

−βf (1 − cos θif )

1 − βf

)

− 2Li2

(

−βf(1 + cos θif)

1 − βf cos θif

)

, (C.9)
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where cos θif is the angle between partons i and f in the center-of-mass frame of the

initial state partons, and

βf =

√

1 − m2
t

(p0
f )

2
, 1 − βf cos θif =

sif

p0
f

√
s

. (C.10)

All the quantities in Eq. (C.9) can be expressed in terms of kinematical invariants,

once we use sif =2pi ·pf and:

p0
t =

s − s̄t̄h + m2
t

2
√

s
and p0

t̄ =
s − s̄th + m2

t

2
√

s
, (C.11)

with s̄fh =(pf + ph)
2.
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APPENDIX D

COLOR ORDERED AMPLITUDES FOR

H → QQ̄T T̄ + G

The tree-level amplitude for h → q(q1)q̄(q2)t(pt)t̄(p
′
t) is explicitly given by:

Ah→qq̄tt̄
LO

= i
mt

v
g2

sδfqfq̄
δftft̄

[

ū(q1)γ
νT a

cqcq̄
v(q2)

] 1

(ph − pt − p′t)
2
× (D.1)

[

ū(pt)

(

γν
ph/ − p′t/ + mt

(ph − p′t)
2 − m2

t

+
−ph/ + pt/ + mt

(ph − pt)2 − m2
t

γν

)

T a
ctct̄

v(p′t)

]

=
1

2

(

δctcq̄
δcqct̄

− 1

N
δctct̄

δcqcq̄

)

δfqfq̄
δftft̄

A0 ,

where ph is taken as incoming, while all the other momenta are outgoing. Using

the color decomposition given in Eq. (3.82), we have rewritten Ah→qq̄tt̄
LO in terms of a

leading color and a sub-leading color ordered amplitude. Both amplitudes are given

by:

A0 = i
mt

v
g2

s [ū(q1)γ
νv(q2)]

1

(ph − pt − p′t)
2
× (D.2)

[

ū(pt)

(

γν
ph/ − p′t/ + mt

(ph − p′t)
2 − m2

t

+
−ph/ + pt/ + mt

(ph − pt)2 − m2
t

γν

)

v(p′t)

]

= i
mt

v
g2

sA0,ν
qq̄

1

(ph − pt − p′t)
2
A0

tt̄,ν ,

where, for future purposes, we have introduced the A0,ν
qq̄ and A0,ν

tt̄ tree-level partial

amplitudes:

A0,ν
qq̄ = ū(q1)γ

νv(q2) , (D.3)

A0,ν
tt̄ = ū(pt)

(

γν ph/ − p′t/ + mt

(ph − p′t)
2 − m2

t

+
−ph/ + pt/ + mt

(ph − pt)2 − m2
t

γν

)

v(p′t) .
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The O(αs) real corrections to the Born amplitude consist of the process h →
qq̄tt̄ + g, where the gluon can be emitted either from the external quark legs or from

the internal gluon propagator. Therefore we can write Ah→qq̄tt̄g as follows:

Ah→qq̄tt̄g = (igs)δfqfq̄
δftft̄

[

Aµ
q (T aT b)cqcq̄

T b
ctct̄

+ Aµ
q̄ (T bT a)cqcq̄

T b
ctct̄

(D.4)

+ Aµ
t T b

cqcq̄

(

T aT b
)

ctct̄
+ Aµ

t̄ T b
cqcq̄

(

T bT a
)

ctct̄
+ Aµ

g (if abcT b
ctct̄

T c
cqcq̄

)
]

· εµ(k) ,

where εµ(k) is the polarization vector of the emitted gluon and we have defined by

Aµ
i the part of the real amplitude corresponding to the emission of the gluon from

i=q, q̄, t, t̄, g. More explicitly, the Aµ
i amplitudes are given by:

Aµ
q =

(

g2
s

mt

v

)

(

ū(q1)γ
µ q1/ + k/

2q1 · k
γνv(q2)

)

1

(ph − pt − p′t)
2
A0,ν

tt̄ , (D.5)

Aµ
q̄ =

(

g2
s

mt

v

)

(

ū(q1)γν
−q2/ − k/

2q2 · k
γµv(q2)

)

1

(ph − pt − p′t)
2
A0,ν

tt̄ ,

Aµ
g =

(

g2
s

mt

v

)

A0
qq̄,ρ

1

(ph − pt − p′t)
2

(

V µρν
3g (k, q1, q2)

) 1

(q1 + q2)2
A0

tt̄,ν ,

Aµ
t =

(

g2
s

mt

v

)

A0,ν
qq̄ ū(pt)

(

γµ pt/ + k/ + mt

2pt · k
γν

ph/ − p′t/ + mt

(ph − p′t)
2 − m2

t

+
−ph/ + pt/ + mt

(ph − pt)2 − m2
t

γµ −ph/ + pt/ + k/ + mt

(ph − pt − k)2 − m2
t

γν

+ γµ pt/ + k/ + mt

2pt · k
−ph/ + pt/ + k/ + mt

(ph − pt − k)2 − m2
t

γν

)

1

(q1 + q2)2
v(p′t) ,

Aµ
t̄ =

(

g2
s

mt

v

)

A0,ν
qq̄ ū(pt)

( −ph/ + pt/ + mt

(ph − pt)2 − m2
t

γν
−p′t/ − k/ + mt

2p′t · k
γµ

+ γν
ph/ − p′t/ − k/ + mt

(ph − p′t − k)2 − m2
t

γµ ph/ − p′t/ + mt

(ph − p′t)
2 − m2

t

+ γν
ph/ − p′t/ − k/ + mt

(ph − p′t − k)2 − m2
t

−p′t/ − k/ + mt

2p′t · k
γµ

)

1

(q1 + q2)2
v(p′t) ,

where

V µρν
3g (k, q1, q2) = (−2kρ − qρ)gµν + (2qµ + kµ)gνρ + (−qν + kν)gµρ) . (D.6)

Using the color decomposition given in Eq. (3.82), we can also rewrite Ah→qq̄tt̄g as a

linear combination of four color ordered amplitudes, as already given in Eq. (3.83).
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By matching the color factors in Eq. (D.4) to the color factors in Eq. (3.83), we see

that the color ordered amplitudes Ai(q1, q2, pt, p
′
t, k) (for i = 1, . . . , 4) are given by

[72]:

A1(q1, q2, pt, p
′
t, k) =

(

Aµ
q + Aµ

t̄ −Aµ
g

)

· εµ(k) , (D.7)

A2(q1, q2, pt, p
′
t, k) =

(

Aµ
q̄ + Aµ

t + Aµ
g

)

· εµ(k) ,

A3(q1, q2, pt, p
′
t, k) =

(

Aµ
q + Aµ

q̄

)

· εµ(k) ,

A4(q1, q2, pt, p
′
t, k) =

(

Aµ
t + Aµ

t̄

)

· εµ(k) .
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APPENDIX E

EXTRACTING COLLINEAR LOGARITHMS

In this Appendix, we provide a detailed calculation which illustrates the origin of

the collinear logarithms, Λb, in Eq. (4.1) and the form of the b PDF given in Eq. (4.4).

As explained in Chapter 4, Λb-type collinear logarithms arise in the integration over

the phase space of final state b quarks emitted at low transverse momentum with

respect to the incoming partons. Fig. E.1 illustrates a prototype case: one of the

final state b quarks is directly originating from the g → bb̄ splitting of an initial state

gluon, while the shaded blob represents all possible non-collinear configurations of the

remaining particles (one in this case, corresponding to the emission of a Higgs boson

from the external b̄ antiquark leg). In the mb → 0 limit, the g → bb̄ configuration

gives origin to collinear singularities where the two b quarks are emitted in the same

direction of the splitting gluon. In our case, these singularities will appear in the

pb
T → 0 phase space region, and, if we take mb 6= 0, will be regulated by the b-quark

mass, leaving behind logarithms of mb, as we will see in the following.

g

g

b

b

pb
q1

-q1+pb=-k

Figure E.1. Tree-level Feynman diagram for gg → bb̄h depicting the almost collinear
emission of a bottom quark (upper leg).
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The contribution to the total partonic cross section from this diagram can be

written as:

dσ̂gg→bb̄h =
1

(2)2E12E2

d3pb

(2π)3

1

2Eb

d3pb̄

(2π)3

1

2Eb̄

d3ph

(2π)3

1

2Eh

∑

|Mgg→bb̄h|2

·(2π)4δ(4)(q1 + q2 − pb − pb̄ − ph) . (E.1)

where E1,2 are the energies of the initial state gluons, while Eb,b̄,h are the energies

of the final state particles. The amplitude for this process is given by Mgg→bb̄h.

To investigate the origin of the collinear logarithms, we write the amplitude of this

diagram as (neglecting mass terms):

Mgg→bb̄h = gsT
aū(pb)γµ

(6 q1− 6 pb)

(q1 − pb)2
M′

gb̄→b̄hε
µ , (E.2)

where M′
gb̄→b̄h

is related to the full gb̄ → b̄h amplitude by:

Mgb̄→b̄h = v̄(−q1 + pb)M′
gb̄→b̄h (E.3)

For the sum over the gluon polarizations, we introduce a light-like vector nµ which

satisfies n · q1 6= 0 and write:

∑

εµ(q1)ε
ν∗(q1) = −gµν +

qµ
1 nν + qν

1n
µ

q1 · n
. (E.4)

The amplitude squared then takes the form:

|Mgg→bb̄h|2 = g2
sCFTr

{

M′∗
gb̄→b̄h

(6 q1− 6 pb)

(q1 − pb)2
[γν 6 pbγµ]

(6 q1− 6 pb)

(q1 − pb)2

·M′
gb̄→b̄h

}(

−gµν +
qµ
1 nν + qν

1n
µ

q1 · n

)

= g2
sCFTr

{

M′∗
gb̄→b̄h

(6 q1− 6 pb)

(q1 − pb)2

[

−γµ 6 pbγµ

+
1

n · q1
(6 n 6 pb 6 q1+ 6 q1 6 pb 6 n)

]

(6 q1− 6 pb)

(q1 − pb)2
M′

gb̄→b̄h

}

(E.5)
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Commuting gamma matrices and contracting like indices, we find:

|Mgg→bb̄h|2 = g2
sCF

2

(2q1 · pb)2(n · q1)
Tr

{

M′∗
gb̄→b̄h(6 q1− 6 pb)

·
[

((n · pb) 6 q1 + (pb · q1) 6 n)

]

(6 q1− 6 pb)M′
gb̄→b̄h

}

, (E.6)

and commuting the first factor of (6 q1− 6 pb) to the right and contracting it with the

other factor of (6 q1− 6 pb), we get:

|Mgg→bb̄h|2 = g2
sCF

2

(2q1 · pb)(n · q1)
Tr

{

M′∗
gb̄→b̄h ·

[

(n · pb) 6 pb

+n · (q1 − pb)(6 q1− 6 pb) + (q1 · pb) 6 n
]

M′
gb̄→b̄h

}

. (E.7)

Now we wish to specialize to the near collinear limit, i.e. to the limit when the b quark

has small transverse momentum. To do this, we use the following decomposition for

the four-momenta of the b quark:

kµ = zqµ
1 + βnµ + kµ

⊥ , (E.8)

where k=q1 − pb is the momentum of the virtual b and z is the fraction of the initial

gluon’s energy carried by the b quark. In addition, the external quark’s momentum

can be written as:

pµ
b = qµ

1 − kµ

= (1 − z)qµ
1 − βnµ − kµ

⊥ . (E.9)

Note that kµ
⊥ is transverse to both qµ

1 and nµ and kµ
⊥kµ⊥ = −k2

T .

Requiring the external b quark to be on-shell (p2
b =0), we find:

β = − k2
T

2(1 − z)(q1 · n)
. (E.10)

With this parameterization, the matrix-element-squared simplifies to:

|Mgg→bb̄h|2 = 2g2
sCF

(1 − z)

k2
T

Tr

{

M′∗
gb̄→b̄h

[

(1 − z) 6 pb + z(6 q1− 6 pb) − β 6 n
]

M′
gb̄→b̄h

}

,

(E.11)
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We can now rewrite the amplitude squared for the two-to-three process (gg → bb̄h)

as the convolution of the g → bb̄ splitting function with the amplitude squared of

the two-to-two process (gb̄ → b̄h), plus corrections that vanish in the small kT limit.

To achieve this, we rewrite the 6 pb appearing in the first term of the trace in terms

of (6 q1− 6 pb) plus terms of higher order in kT . From the definition of 6 pb, we find:

6 pb =

(

1 − z

z

)[

(6 q1− 6 pb)− 6 kT − β 6 n
]

− 6 kT − β 6 n , (E.12)

and using this in Eq. (E.11) we have:

|Mgg→bb̄h|2 = 2g2
sCF

(1 − z)

k2
T

Tr

{

M′∗
gb̄→b̄h

[

(

z2 + (1 − z)2

z

)

(6 q1− 6 pb)

+O(kT )

]

M′
gb̄→b̄h

}

' g2
sCF

4

k2
T

(

1 − z

z

)(

(1 − z)2 + z2

2

)

Tr

{

M′∗
gb̄→b̄h(6 q1− 6 pb)

·M′
gb̄→b̄h

}

≡ g2
sCF

4

k2
T

(

1 − z

z

)

Pqg(z)|Mgb̄→b̄h|2 . (E.13)

In the small kT limit, the phase space for the external b quark can be written as:

d3pb

(2π)3

1

2Eb
' 1

16π2

dzdk2
T

(1 − z)
(E.14)

Inserting Eqs. (E.13) and (E.14) into Eq. (E.1), we find:

dσ̂gg→bb̄h =
1

16π2

dzdk2
T

k2
T

(16παsCF Pqg(z))

[

1

(2)2zE12E2

d3pb̄

(2π)3

1

2Eb̄

d3ph

(2π)3

1

2Eh

(

2Nc

2(N2
c − 1)

)

∑

|Mgb̄→b̄h|2(2π)4δ(4)(k + q2 − pb̄ − ph)

]

≡ dk2
T

k2
T

dz
αs

2π
Pqg(z)dσ̂gb̄→b̄h (E.15)

where the factor
(

2Nc

2(N2
c −1)

)

comes from rescaling the spin/color average of gg → bb̄h

to that of gb̄ → b̄h. The integration over k2
T , with upper and lower bounds of µ2

h
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and m2
b , respectively, gives rise to the collinear logarithm Λb. Finally, to obtain the

hadronic cross section, we convolute Eq. (E.15) with the gluon PDFs, whereupon the

form of the b PDF (Eq. (4.4)) becomes apparent.
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